

PROGETTAZIONE E SERVIZI PER L'IMPIANTISTICA

Coll. Per. Ind. BS n° 1107 – Certific. Energ. Reg. Lombardia n° 1275 Prev. Incendi Legge 818 n° BS1107P143

LEGGE 9 gennaio 1991, n. 10 RELAZIONE TECNICA

DDUO 12 Gennaio 2017 n. 176 DDUO 8 Marzo 2017 n. 2456 DDUO 19 Dicembre 2019 n. 18546

COMMITTENTE : TOMGIO Srl

EDIFICIO : Ampliamento struttura alberghiera

INDIRIZZO : via Grigolli, 10 - Desenzano del Garda (BS)

COMUNE : Desenzano del Garda

INTERVENTO : Ampliamento struttura alberghiera.

Rif.: L.10 Palazzo del Garda.E0001

Rif: **PS 3061** 14/04/2021

RELAZIONE TECNICA DI CUI AL PUNTO 4.8 DELL'ALLEGATO 1 DEL DECRETO ATTUATIVO DELLA DGR 3868 DEL 17.7.2015

Nuove costruzioni, ristrutturazioni importanti di primo livello, edifici ad energia quasi zero

Un edificio esistente è sottoposto a ristrutturazione importante di primo livello quando l'intervento ricade nelle tipologie indicate nell'allegato A del decreto attuativo della DGR 3868 del 17.7.2015.

1.	INFORM	IAZIONI GENERALI							
Comi	une di	Desenzano del Garda		Provincia	BS				
_	•	realizzazione di (specificare il t	' ' /						
Amp	Ampliamento struttura alberghiera con impianti termici indipendenti.								
[]	fini dell'a	articolo 5, comma 15, del decre	ra tra quelli di proprietà pubblica eto del Presidente della Repubblica a) e dell'allegato I, comma 14 del	ca 26 agosto :	1993, n. 412				
gli es	Sito in (specificare l'ubicazione o, in alternativa, indicare che è da edificare nel terreno in cui si riportano gli estremi del censimento al Nuovo Catasto Territoriale): via Grigolli, 10 - Desenzano del Garda (BS)								
Richi	esta perm	esso di costruire		del					
Perm	esso di co	ostruire/DIA/SCIA/CIL o CIA		del					
Varia	nte perm	esso di costruire/DIA/SCIA/CIL	o CIA	del					
decre	eto del P rtenenti a		- •						
Num	Numero delle unità abitative								
Committente (i)			TOMGIO Srl						
		-	Via Roma, 68 - Grezzana (VR))					
Proge	ettista del	l'isolamento termico	Per Ind PAPA STEFANO						
		-	Albo: Periti Industr. Pr.: BRES	CTA Niccr : 1	107				
		-	AIDO. PETILI TIIUUSU. FI BRES	IN.ISCI I	107				

2. FATTORI TIPOLOGICI DELL'EDIFICIO (O DEL COMPLESSO DI EDIFICI)

Gli elementi tipologici forniti, al solo scopo di supportare la presente relazione tecnica, sono i seguenti:

- [X] Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali.
- [] Prospetti e sezioni degli edifici con evidenziazione dei sistemi di protezione solare.
- [] Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari.

3. PARAMETRI CLIMATICI DELLA LOCALITÀ

Gradi giorno (della zona d'insediamento, determinati in base al DPR 412/93)

2229 GG

Temperatura esterna minima di progetto (secondo UNI 5364 e successivi aggiornamenti)

-6,5 °C

Temperatura massima estiva di progetto dell'aria esterna secondo norma

31,8 °(

4. DATI TECNICI E COSTRUTTIVI DELL'EDIFICIO (O DEL COMPLESSO DI EDIFICI) E DELLE RELATIVE STRUTTURE

a) Condizionamento invernale

Descrizione	V [m³]	S [m²]	S/V [1/m]	Su [m²]	θ _{int} [°C]	φ _{int} [%]
Zona	333,16	293,64	0,88	66,94	20,0	65,0
Ampliamento struttura alberghiera	333,16	293,64	0,88	66,94	20,0	65,0

Presenza sistema di contabilizzazione del calore:

[]

b) Condizionamento estivo

Descrizione	V [m³]	S [m²]	S/V [1/m]	Su [m²]	θ _{int} [°C]	Φint [%]
Zona	333,16	293,64	0,88	66,94	26,0	52,3
Ampliamento struttura alberghiera	333,16	293,64	0,88	66,94	26,0	52,3

Presenza sistema di contabilizzazione del calore:

[]

- V Volume delle parti di edificio abitabili o agibili al lordo delle strutture che li delimitano
- S Superficie esterna che delimita il volume
- S/V Rapporto di forma dell'edificio
- Su Superficie utile dell'edificio
- θ_{int} Valore di progetto della temperatura interna
- φint Valore di progetto dell'umidità relativa interna

c) Informazioni generali e prescrizioni

Presenza di reti di teleriscaldamento/raffreddamento a meno di 1000 m: [X]

Motivazione della soluzione prescelta:

Non è presente alcuna rete di teleriscaldamento a meno di 1.000 mt di distanza

Livello di automazione per il controllo la regolazione e la gestione delle tecnologie dell'edificio e degli impianti termici (BACS, minimo classe B secondo UNI EN 15232)

Nessuna automazione presente

Adozione di misuratori di energia (Energy Meter):

[**X**]

Descrizione delle principali caratteristiche:

Nessuna adozione impianto termoautonomo

Adozione di sistemi di contabilizzazione diretta del calore, del freddo e dell'ACS:

[**X**]

Descrizione dei sistemi utilizzati o motivazioni che hanno portato al non utilizzo:

Impianto termoutonomo

Utilizzazione di fonti di energia rinnovabili per la copertura dei consumi di calore, di elettricità e per il raffrescamento secondo i principi minimi di integrazione, le modalità e le decorrenze di cui all'allegato 3, del decreto legislativo 3 marzo 2011, n. 28.

Descrizione e percentuali di copertura:

Pompa di calore ad elevato rendimento equiparata a fonte rinnovabile

Adozione sistemi di regolazione automatica della temperatura ambiente singoli locali o nelle zone termiche servite da impianti di climatizzazione invernale:

[**X**]

Adozione sistemi di compensazione climatica nella regolazione automatica della temperatura ambiente singoli locali o nelle zone termiche servite da impianti di climatizzazione invernale:

Motivazioni che hanno portato al non utilizzo:

Termoregolazione climatica agente direttamente sulla modulazione della pompa di calore

Valutazione sull'efficacia dei sistemi schermanti delle superfici vetrate sia esterni che interni presenti:

Sistemi schermanti da rilievo

5. DATI RELATIVI AGLI IMPIANTI

5.1 Impianti termici

b)

Impianto tecnologico destinato ai servizi di climatizzazione invernale e/o estiva e/o produzione di acqua calda sanitaria, indipendentemente dal vettore energetico utilizzato.

a) Descrizione impianto

Tipologia Impianto termico per la climatizzazione estate/inverno con pompe di calore ad inverter.							
Sistemi di generazione Pompa di calore aria/aria ad espansione diretta ad alta efficienza, con gestione ad inverter.							
Sistemi di termoregolazione Regolazione per singolo ambiente agente direttamente sull'inverter dell'unità esterna.							
Sistemi di contabilizzazione dell'energia termica							
Sistemi di distribuzione del vettore termico Distribuzione tradizionale andate e ritorni per 10/91.	refrigerante ecologico	o isolate secondo L					
Sistemi di ventilazione forzata: tipologie							
Sistemi di accumulo termico: tipologie							
Sistemi di produzione e di distribuzione dell'acqua co	alda sanitaria						
Trattamento di condizionamento chimico per l'acqua	a, norma UNI 8065:	[]					
Presenza di un filtro di sicurezza:	•	[]					
Specifiche dei generatori di energia							
Installazione di un contatore del volume di acqua ca	ılda sanitaria:	[]					
Installazione di un contatore del volume di acqua di reintegro dell'impianto:							
Zona Zona	Quantità	1					
Servizio Riscaldamento	Fluido termovettore	Aria					
Tipo di generatore Pompa di calore	Energia elettrica						
Marca – modello Mitsubishi MUZ-AP35 (n.3)							
Tipo sorgente fredda Aria esterna							
Potenza termica utile in riscaldamento	12,0 kW						
Coefficiente di prestazione (COP)	3,88						

Temperature di riferimento: °C °C Sorgente fredda 7,0 Sorgente calda 20,0 Zona Quantità 1 Zona Raffrescamento Fluido termovettore Aria Servizio Tipo di generatore Pompa di calore Combustibile Energia elettrica Mitsubishi MUZ-AP35 (n.3) Marca - modello Tipo sorgente fredda Aria Potenza termica utile in raffrescamento 10,5 kW

Indice di efficienza energetica (EER)

3,54

Temperature di riferimento:

Sorgente fredda 19,0 °C Sorgente calda 31,8 °C

Per gli impianti termici con o senza produzione di acqua calda sanitaria, che utilizzano, in tutto o in parte, macchine diverse da quelle sopra descritte, le prestazioni di dette macchine sono fornite utilizzando le caratteristiche fisiche della specifica apparecchiatura, e applicando, ove esistenti, le vigenti norme tecniche.

c) Specifiche relative ai sistemi di regolazione dell'impianto termico

Altro	Tipo di conduzione prevista	[X] continua con attenuazione notturna	[] intermittente
	Altro		

Tipo di conduzione estiva prevista:

Continua con attenuazione/spegnimento notturno.

Dispositivi per la regolazione automatica della temperatura ambiente nei singoli locali o nelle singole zone, ciascuna avente caratteristiche di uso ed esposizioni uniformi.

Descrizione sintetica dei dispositivi	Numero di apparecchi
Regolazione per singolo ambiente agente direttamente sulle unità terminali e sull'inverter dell'unità esterna	.

e) Terminali di erogazione dell'energia termica

Tipo di terminali	Numero di apparecchi	Potenza termica nominale [W]
Unità interna ad espansione diretta	3	1200
Termoarredo elettrico	2	1400

h) Specifiche dell'isolamento termico della rete di distribuzione

Descrizione della rete	Tipologia di isolante	λ _{is} [W/mK]	Sp _{is} [mm]
Distribuzione freon	Poliuretano espanso (preformati)	0,034	20

λ_{is} Conduttività termica del materiale isolante

Spis Spessore del materiale isolante

6. PRINCIPALI RISULTATI DEI CALCOLI

Edificio: Ampliamento struttura alberghiera

- Si dichiara che l'edificio oggetto della presente relazione può essere definito "edificio ad energia quasi zero" in quanto sono contemporaneamente rispettati:
 - Tutti i requisiti previsti dalla lettera b), del punto 6.13 dell'allegato 1 del decreto attuativo della DGR 3868 del 17.7.2015
 - Gli obblighi di integrazione delle fonti rinnovabili previsti dalla lettera c) del punto 6.13 dell'allegato 1 del decreto attuativo della DGR 3868 del 17.7.2015

a) Involucro edilizio e ricambi d'aria

Caratteristiche termiche dei componenti opachi dell'involucro edilizio

Cod.	Descrizione	Trasmittanza U [W/m²K]	Trasmittanza media [W/m²K]
M1	Parete vs esterno	0,203	0,212
P1	Pavimento su terreno	0,224	0,224

Caratteristiche termiche dei divisori opachi e delle strutture dei locali non climatizzati

Cod.	Descrizione	Trasmittanza U	Trasmittanza media
Cou.	Descrizione	[W/m ² K]	[W/m²K]

Caratteristiche igrometriche dei componenti opachi dell'involucro edilizio

Cod.	Descrizione	Condensa superficiale	Condensa interstiziale
M1	Parete vs esterno	Positiva	Positiva
M2	Porta in legno	Positiva	Positiva
P1	Pavimento su terreno	Positiva	Positiva

Caratteristiche di massa superficiale Ms e trasmittanza periodica YIE dei componenti opachi

Cod.	Descrizione	Ms [kg/m²]	YIE [W/m²K]
M1	Parete vs esterno	<i>67</i>	0,022

Caratteristiche termiche dei componenti finestrati

Cod.	Descrizione	Trasmittanza infisso U _w [W/m²K]	Trasmittanza vetro U _g [W/m²K]
W1	Finestra telaio alluminio150x250 vetro doppio B.E.	1,268	1,100

Numero di ricambi d'aria (media nelle 24 ore) - specificare per le diverse zone

N.	Descrizione	Valore di progetto [vol/h]	Valore medio 24 ore [vol/h]
1	Zona	0,50	0,50

b) Indici di prestazione energetica per la climatizzazione invernale ed estiva, per la produzione di acqua calda sanitaria, per la ventilazione e l'illuminazione

Determinazione dei seguenti indici di prestazione energetica, espressi in kWh/m² anno, così come definite al punto 6 dell'Allegato 1 del decreto attuativo della DGR 3868 del 17.7.2015, rendimenti e parametri che ne caratterizzano l'efficienza energetica:

Metodo di calcolo utilizzato (indicazione obbligatoria)

UNI/TS 11300 e norme correlate

Coefficiente medio globale di scambio termico per trasmissione per unità di superficie disperdente (UNI EN ISO 13789)

293,64 0,26 0,50 Positiva	m² W/m²K W/m²K
utile	
66,94 0,018	m ²
0,040	
Positiva	
one invernale de	ell'edificio
33,60	kWh/m²
47,97	kWh/m²
Positiva	
one estiva dell'e	edificio
19,00	kWh/m ²
19,00 23,33	kWh/m ² kWh/m ²
23,33	kWh/m²
23,33 Positiva	kWh/m²
23,33 Positiva io (Energia prin	kWh/m²
23,33 Positiva io (Energia prin 57,84 0,00 14,08	kWh/m² naria) kWh/m² kWh/m² kWh/m²
23,33 Positiva io (Energia prin 57,84 0,00 14,08 0,00	kWh/m² naria) kWh/m² kWh/m² kWh/m² kWh/m²
23,33 Positiva io (Energia prin 57,84 0,00 14,08 0,00 128,83	kWh/m² haria) kWh/m² kWh/m² kWh/m² kWh/m² kWh/m²
23,33 Positiva io (Energia prin 57,84 0,00 14,08 0,00 128,83 0,00	kWh/m² haria) kWh/m² kWh/m² kWh/m² kWh/m² kWh/m² kWh/m²
23,33 Positiva io (Energia prin 57,84 0,00 14,08 0,00 128,83 0,00 200,75	kWh/m ²
23,33 Positiva io (Energia prin 57,84 0,00 14,08 0,00 128,83 0,00	kWh/m² haria) kWh/m² kWh/m² kWh/m² kWh/m² kWh/m² kWh/m²
23,33 Positiva io (Energia prin 57,84 0,00 14,08 0,00 128,83 0,00 200,75 241,19	kWh/m²
	0,26 0,50 Positiva utile 66,94 0,018 0,040 Positiva one invernale de 33,60 47,97 Positiva

b.1) Efficienze medie stagionali degli impianti

Descrizione	Servizi	ղց [%]	η _{ց,аmm} [%]	Verifica
Zona	Riscaldamento	58,1	56,3	Positiva
Zona	Raffrescamento	135,0	85,7	Positiva

Consuntivo energia

Energia consegnata o fornita (E _{del})	1352	kWh
Energia rinnovabile (E _{gl,ren})	56,74	kWh/m²
Energia esportata (E _{exp})	0	kWh
Fabbisogno annuo globale di energia primaria (E _{gl,tot})	200,75	kWh/m²
Energia rinnovabile in situ (elettrica)	0	$kWh_{e} \\$
Energia rinnovabile in situ (termica)	0	kWh

f) Valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento di sistemi ad alta efficienza

7. ELEMENTI SPECIFICI CHE MOTIVANO EVENTUALI DEROGHE A NORME FISSATE DALLA NORMATIVA VIGENTE

Nei casi in cui la normativa vigente consente di derogare ad obblighi generalmente validi, in questa sezione vanno adeguatamente illustrati i motivi che giustificano la deroga nel caso specifico.

8. DOCUMENTAZIONE ALLEGATA

[X]	Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali e definizione degli elementi costruttivi. N. x Rif.: vedi allegati
[]	Prospetti e sezioni degli edifici con evidenziazione dei sistemi fissi di protezione solare e definizione degli elementi costruttivi. N. Rif.:
[]	Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari. N Rif.:
[]	Schemi funzionali degli impianti contenenti gli elementi di cui all'analoga voce del paragrafo "Dati relativi agli impianti". N. Rif.:
[X]	Tabelle con indicazione delle caratteristiche termiche, termoigrometriche e della massa efficace dei componenti opachi dell'involucro edilizio con verifica dell'assenza di rischio di formazione di muffe e di condensazioni interstiziali. N. x Rif.: vedi allegati
[X]	Tabelle con indicazione delle caratteristiche termiche dei componenti finestrati dell'involucro edilizio e della loro permeabilità all'aria. N. x Rif.: vedi allegati
[X]	Tabelle indicanti i provvedimenti ed i calcoli per l'attenuazione dei ponti termici. N. x Rif.: vedi allegati
[]	Schede con indicazione della valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento di sistemi alternativi ad alta efficienza. N. Rif.:
[]	Altri allegati. N. Rif.:
	coli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente introllo presso i progettisti:
[X]	Calcolo potenza invernale: dispersioni dei componenti e potenza di progetto dei locali.
[X]	Calcolo energia utile invernale del fabbricato $Q_{h,nd}$ secondo UNI/TS 11300-1.
[X]	Calcolo energia utile estiva del fabbricato Q _{C,nd} secondo UNI/TS 11300-1.
[]	Calcolo dei coefficienti di dispersione termica H_T - H_U - H_G - H_A - H_V .
[]	Calcolo mensile delle perdite ($Q_{h,ht}$), degli apporti solari (Q_{sol}) e degli apporti interni (Q_{int}) secondo UNI/TS 11300-1.
[]	Calcolo degli scambi termici ordinati per componente.
[X]	Calcolo del fabbisogno di energia primaria rinnovabile, non rinnovabile e totale secondo UNI/TS 11300-5.
[X]	Calcolo del fabbisogno di energia primaria per la climatizzazione invernale secondo UNI/TS 11300-2 e UNI/TS 11300-4.
[X]	Calcolo del fabbisogno di energia primaria per la produzione di acqua calda sanitaria secondo UNI/TS 11300-2 e UNI/TS 11300-4.
[X]	Calcolo del fabbisogno di energia primaria per la climatizzazione estiva secondo UNI/TS 11300-3.
[]	Calcolo del fabbisogno di energia primaria per l'illuminazione artificiale degli ambienti secondo UNI/TS 11300-2 e UNI EN 15193.
[]	Calcolo del fabbisogno di energia primaria per il servizio di trasporto di persone o cose secondo UNI/TS 11300-6.

9. DICHIAR	AZIONE DI F	RISPONDENZA		
Il sottoscritto	Per Ind	STEFANO	PAPA	
	TITOLO	NOME	COGNOME	
iscritto a	Periti Indu	ıstr.	BRESCIA	1107
	ALBO - ORDIN	E O COLLEGIO DI APPARTENENZA	PROV.	N. ISCRIZIONE
essendo a conos s.m.i.	scenza delle s	sanzioni previste dall'articolo 2	7 della legge regionale 1	1 Dicembre 2006 n. 24
		DICHIAR	A	
sotto la propria i	responsabilità	che:		
	relativo alle o 868 del 17.7.	opere di cui sopra è risponden 2015;	te alle prescrizioni conter	nute nel decreto attuativ
		pere di cui sopra rispetta gli ob i nel decreto attuativo della DG		e fonti rinnovabili secono
	nformazioni d ati progettual	contenuti nella relazione tecnic i.	a sono conformi a quant	o contenuto o desumibi
Data, <u>14/0</u>	4/2021			
Il progettista				
		TIMBRO	FIRM	A

NOTE:

Il presente studio non riguarda previsioni ed abbattimenti acustici tra le varie unità immobiliari e tra le stesse e l'esterno e non comprende verifiche o previsioni di idoneità statica delle strutture.

Relazione tecnica di calcolo prestazione energetica del sistema edificio-impianto

EDIFICIO Ampliamento struttura alberghiera

INDIRIZZO via Grigolli, 10 - Desenzano del Garda (BS)

COMMITTENTE TOMGIO Srl

INDIRIZZO Via Roma, 68 - Grezzana (VR)

COMUNE **Desenzano del Garda**

Rif. *L.10-Palazzo del Garda.E0001*Software di calcolo EDILCLIMA – EC700 versione 10.21.14

Studio Termotecnico Papa Stefano Via Rovetta, 37 - 25080 - Padenghe s/G - BS

DATI PROGETTO ED IMPOSTAZIONI DI CALCOLO

Dati generali

Destinazione d'uso prevalente (DPR 412/93) E.1 (3) Edifici adibiti ad albergo, pensione ed attività

similari.

Edificio pubblico o ad uso pubblico **No**Edificio situato in un centro storico **No**Tipologia di calcolo -

Opzioni lavoro

Ponti termici Calcolo analitico

Resistenze liminari Prospetto 1 - UNI EN ISO 6946

Serre / locali non climatizzati

Calcolo semplificato

Capacità termica

Calcolo semplificato

Calcolo manuale

Radiazione solare Calcolo con esposizioni predefinite

Opzioni di calcolo

Regime normativo UNI/TS 11300-4 e 5:2016

Rendimento globale medio stagionale DM 26.06.15 ed UNI/TS 11300 (calcolo 'fisico')

Verifica di condensa interstiziale UNI EN ISO 13788

DATI CLIMATICI DELLA LOCALITÀ

Caratteristiche geografiche

Località Desenzano del Garda

Provincia Brescia

Altitudine s.l.m. 67 m

Latitudine nord 45° 27′ Longitudine est 10° 32′ Gradi giorno DPR 412/93 2229

Zona climatica E

Località di riferimento

per dati invernali **Brescia**per dati estivi **Brescia**

Stazioni di rilevazione

per la temperatura

per l'irradiazione

per il vento

Buttapietra

Buttapietra

Buttapietra

Caratteristiche del vento

Regione di vento:

Direzione prevalente

Est

Distanza dal mare > 40 km
Velocità media del vento 0,9 m/s
Velocità massima del vento 1,8 m/s

Dati invernali

Temperatura esterna di progetto -6,5 °C

Stagione di riscaldamento convenzionale dal **15 ottobre** al **15 aprile**

Dati estivi

Temperatura esterna bulbo asciutto

Temperatura esterna bulbo umido

Umidità relativa

Escursione termica giornaliera

31,8 °C

23,0 °C

48,0 %

Escursione termica giornaliera

Temperature esterne medie mensili

Des	crizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Temp	eratura	°C	2.2	4.3	8.7	13.1	17.7	22.1	23,8	22,6	18.6	13.5	7,8	4.1

Irradiazione solare media mensile

Esposizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Nord	MJ/m ²	1,4	2,3	3,6	5,5	8,4	10,2	9,5	6,8	4,5	2,9	1,6	1,2
Nord-Est	MJ/m²	1,6	3,0	5,5	8,2	11,7	13,5	13,0	10,3	7,3	3,9	1,8	1,3
Est	MJ/m ²	3,9	6,1	9,1	11,3	14,5	16,0	15,9	13,6	11,5	6,8	3,6	3,4
Sud-Est	MJ/m²	7,3	9,3	11,5	11,9	13,5	13,8	14,1	13,6	13,4	9,3	5,8	6,7
Sud	MJ/m ²	9,4	11,2	12,1	10,8	11,0	10,7	11,0	11,5	13,1	10,6	7,2	8,8
Sud-Ovest	MJ/m ²	7,3	9,3	11,5	11,9	13,5	13,8	14,1	13,6	13,4	9,3	5,8	6,7
Ovest	MJ/m²	3,9	6,1	9,1	11,3	14,5	16,0	15,9	13,6	11,5	6,8	3,6	3,4
Nord-Ovest	MJ/m²	1,6	3,0	5,5	8,2	11,7	13,5	13,0	10,3	7,3	3,9	1,8	1,3
Orizz. Diffusa	MJ/m²	1,9	3,1	4,8	6,9	8,5	8,7	8,3	7,4	5,6	4,1	2,3	1,6
Orizz. Diretta	MJ/m²	2,7	4,6	7,5	9,5	13,4	15,9	15,9	12,7	10,3	4,9	2,2	2,3

Irradianza sul piano orizzontale nel mese di massima insolazione: 285 W/m²

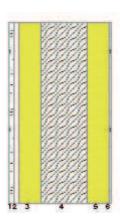
CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI EN 12831 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: Parete vs esterno

Trasmittanza termica	0,203	W/m ² K

Spessore **283** mm Temperatura esterna **-6,5** °C

(calcolo potenza invernale)


Permeanza **1,109** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 73 kg/m²

Massa superficiale (senza intonaci) 67 kg/m²

Trasmittanza periodica **0,022** W/m²K

Fattore attenuazione **0,110** - Sfasamento onda termica **-10,5** h

Codice: M1

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,130	-	1	-
1	Knaufinsularion IDROLASTRA GKI (H13) con barriera al vapore	12,50	0,2000	0,063	10	1,03	7900
2	Intercapedine non ventilata Av<500 mm²/m	15,00	0,0882	0,170	-	1	-
3	Rockwool Pannello 226 30-160mm	60,00	0,0350	1,714	60	1,03	1
4	Legno di abete flusso perpend. alle fibre	130,00	0,1200	1,083	450	1,60	625
5	Rockwool Frontrock Max Plus	60,00	0,0350	1,714	<i>78</i>	1,03	1
6	Intonaco plastico per cappotto	5,00	0,3000	0,017	1300	0,84	30
-	Resistenza superficiale esterna	-	-	0,040	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

<u>Descrizione della struttura</u>: Parete vs esterno

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Criterio per l'aumento dell'umidità interna Classe di concentrazione del vapore (0,006 kg/m³)

%

Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{RSI,max} \le f_{RSI}$) **Positiva**

Mese critico *gennaio*

Fattore di temperatura del mese critico $f_{RSI,max}$ 0,732 Fattore di temperatura del componente f_{RSI} 0,951 Umidità relativa superficiale accettabile

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

Non si verifica formazione di condensa interstiziale nella struttura durante tutto l'arco dell'anno.

Codice: M1

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI EN 12831 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: Porta in legno

Trasmittanza termica **2,018** W/m²K

Spessore 40 mm

Temperatura esterna (calcolo potenza invernale) **18,0** °C

Permeanza 454,54 5 10⁻¹²kg/sm²Pa

 $\label{eq:massa-superficiale} \mbox{Massa superficiale} \\ \mbox{(con intonaci)} \mbox{ } \mbox{ } \mbox{kg/m}^2 \mbox{}$

 $\begin{tabular}{ll} Massa superficiale \\ (senza intonaci) \end{tabular} \begin{tabular}{ll} \begin{tabul$

Trasmittanza periodica **2,009** W/m²K

Fattore attenuazione **0,996** - Sfasamento onda termica **-0,5** h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130	-		
1	Legno di acero flusso perpend. alle fibre	5,00	0,1800	0,028	710	2,40	43
2	Intercapedine non ventilata Av<500 mm²/m	30,00	0,1667	0,180	-		-
3	Legno di acero flusso perpend. alle fibre	5,00	0,1800	0,028	710	2,40	43
-	Resistenza superficiale esterna	-	-	0,130	-		

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Codice: M2

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

<u>Descrizione della struttura</u>: Porta in legno Codice: M2

- $[\mathbf{x}]$ La struttura non è soggetta a fenomeni di condensa superficiale.
- [x] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento	20,0	°C
Umidità relativa interna costante, pari a	65	%

Verifica criticità di condensa superficiale

Verifica condensa superficiale ($f_{\text{RSI},\text{max}} \leq f_{\text{RSI}})$		Positiva	
Mese critico		-	
Fattore di temperatura del mese critico	$f_{\text{RSI},\text{max}}$	-1,000	
Fattore di temperatura del componente	f_{RSI}	0,660	
Umidità relativa superficiale accettabile		80	%

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

Non si verifica formazione di condensa interstiziale nella struttura durante tutto l'arco dell'anno.

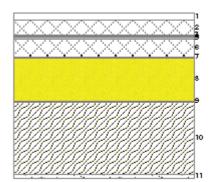
CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI secondo UNI EN 12831 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: Copertura

W/m ² K

Spessore 454 mm

Temperatura esterna (calcolo potenza invernale) -6,5 °C


Permeanza **0,001** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 338 kg/m²

Massa superficiale (senza intonaci) 338 kg/m²

Trasmittanza periodica **0,009** W/m²K

Fattore attenuazione **0,047** - Sfasamento onda termica **-19,7** h

Codice: S1

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	-		0,040	-	-	•
1	Piastrelle in ceramica (piastrelle)	20,00	1,3000	0,015	2300	0,84	9999999
2	Sottofondo di cemento magro	40,00	0,7000	0,057	1600	0,88	20
3	Poliammide (nylon)	1,00	0,2500	0,004	1150	1,60	50000
4	Impermeabilizzazione con bitume	4,00	0,1700	0,024	1200	1,00	188000
5	Impermeabilizzazione con bitume	4,00	0,1700	0,024	1200	1,00	188000
6	Massetto ripartitore in calcestruzzo con rete	50,00	1,4900	0,034	2200	0,88	70
7	Tessuto non tessuto	2,00	0,0500	0,040	1	2,10	200
8	Rockwool DUROCK ENERGY PLUS (50-60>200)	120,00	0,0360	3,333	140	1,03	1
9	RIWEGA - USB MICRO - Barriera al vapore	0,44	0,2200	0,002	352	1,70	4545
10	Legno di abete flusso perpend. alle fibre	200,00	0,1200	1,667	450	1,60	625
11	Knaufinsularion IDROLASTRA GKI (H13) con barriera al vapore	12,50	0,2000	0,063	10	1,03	7900
-	Resistenza superficiale interna	-	-	0,100	-	-	_

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m ² K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	=

Caratteristiche igrometriche dei componenti opachi secondo UNI EN ISO 13788

<u>Descrizione della struttura</u>: <u>Copertura</u> Codice: <u>S1</u>

- [x] La struttura non è soggetta a fenomeni di condensa superficiale.
- [] La struttura non è soggetta a fenomeni di condensa interstiziale.
- [x] La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.

Condizioni al contorno

Temperature e umidità relativa esterne variabili, medie mensili

Temperatura interna nel periodo di riscaldamento 20,0 °C

Criterio per l'aumento dell'umidità interna Classe di concentrazione del vapore (0,006 kg/m³)

Verifica criticità di condensa superficiale

Verifica del rischio di condensa interstiziale (secondo UNI EN ISO 13788)

Verifica condensa interstiziale Positiva

Quantità massima di condensa durante l'anno M_a ${\it 5}$ g/m^2 Quantità di condensa ammissibile M_{lim} ${\it 100}$ g/m^2

Verifica di condensa ammissibile ($M_a \le M_{lim}$) **Positiva**

Mese con massima condensa accumulata marzo
L'evaporazione a fine stagione è Completa

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI EN 12831 - UNI EN ISO 6946 - UNI EN ISO 10077

<u>Descrizione della finestra: Finestra telaio alluminio150x250 vetro doppio B.E.</u> <u>Codice: W1</u>

Caratteristiche del serramento

Tipologia di serramento

Classe di permeabilità Classe 4 secondo Norma UNI EN 12207

Trasmittanza termica U_w **1,268** W/m²K Trasmittanza solo vetro U_a **1,100** W/m²K

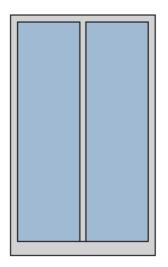
Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.5cm} \textbf{0,837} \hspace{0.5cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.5cm} \textbf{1,00} \hspace{0.5cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.5cm} \textbf{0,30} \hspace{0.5cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.5cm} \textbf{0,670} \hspace{0.5cm} -$ Fattore trasmissione solare totale $g_{gl+sh} \hspace{0.5cm} \textbf{0,658} \hspace{0.5cm} -$

Resistenza termica chiusure 0,00 m 2 K/W f shut 0,6 -

Dimensioni del serramento

Larghezza **150,0** cm Altezza **250,0** cm


Caratteristiche del telaio

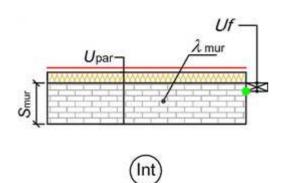
Trasmittanza termica del telaio	U_f	1,30	W/m^2K
K distanziale	K_d	0,04	W/mK
Area totale	A_{w}	<i>3,750</i>	m^2
Area vetro	A_g	2,941	m^2
Area telaio	A_f	0,809	m^2
Fattore di forma	F_f	0,78	-
Perimetro vetro	L_g	11,700	m
Perimetro telaio	L_f	8,000	m

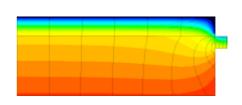
Caratteristiche del modulo

Trasmittanza termica del modulo U **1,400** W/m²K

Ponte termico del serramento

Descrizione del ponte termico: W - Parete - Telaio


Codice: Z1


Tipologia W - Parete - Telaio Trasmittanza termica lineica di calcolo 0,062 W/mK Trasmittanza termica lineica di riferimento 0,062 W/mK Fattore di temperature f_{rsi} 0,837 -

Riferimento UNI EN ISO 14683 e UNI EN ISO 10211

Note

W1 - Giunto parete con isolamento esterno – telaio posto a filo esterno Trasmittanza termica lineica di riferimento (ϕ e) = 0,062 W/mK.

Caratteristiche

Trasmittanza termica telaio	Uf	1,200	W/m²K
Spessore muro	Smur	283,0	mm
Trasmittanza termica parete	Upar	0,203	W/m²K
Conduttività termica muro	λmur	0,250	W/mK

Verifica temperatura critica

<u>Condizioni interne:</u> <u>Condizioni esterne:</u>

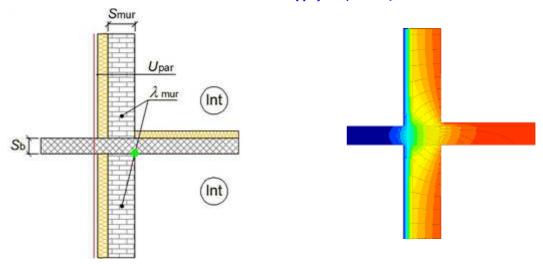
Classe concentrazione del vapore **0,004** kg/m³ Temperature medie mensili - °C

Temperatura interna periodo di riscaldamento 20,0 °C Umidità relativa superficiale ammissibile 80 %

Mese	θi	θe	θsi	θ _{acc}	Verifica
ottobre	20,0	13,5	18,9	17,2	POSITIVA
novembre	20,0	7,8	18,0	14,9	POSITIVA
dicembre	20,0	4,1	17,4	12,5	POSITIVA
gennaio	20,0	2,2	17,1	12,3	POSITIVA
febbraio	20,0	4,3	17,4	11,9	POSITIVA
marzo	20,0	8,7	18,2	12,6	POSITIVA
aprile	20,0	13,1	18,9	14,5	POSITIVA

θ_{i}	Temperatura interna al locale	°C
θ_{e}	Temperatura esterna	°C
θ_{si}	Temperatura superficiale interna in luogo del ponte termico	°C
θ_{acc}	Temperatura minima accettabile per scongiurare il fenomeno di condensa	°C

<u>Descrizione del ponte termico:</u> **B** - Parete - Balcone


Codice: Z2

Tipologia B - Parete - Balcone Trasmittanza termica lineica di calcolo 0,236 W/mK Trasmittanza termica lineica di riferimento 0,472 W/mK Fattore di temperature f_{rsi} 0,752 -

Riferimento UNI EN ISO 14683 e UNI EN ISO 10211

Note

B5 - Giunto parete con isolamento esterno - balcone con isolamento a solaio Trasmittanza termica lineica di riferimento (ϕ e) = 0,472 W/mK.

Caratteristiche

Spessore balcone	Sb	160,0	mm
Spessore muro	Smur	283,0	mm
Trasmittanza termica parete	Upar	0,203	W/m²K
Conduttività termica muro	λmur	0,250	W/mK

Verifica temperatura critica

Condizioni interne: Condizioni esterne:

Classe concentrazione del vapore **0,004** kg/m³ Temperature medie mensili - °C

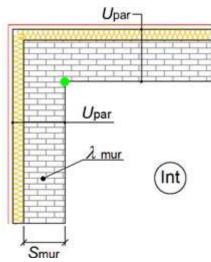
Temperatura interna periodo di riscaldamento 20,0 °C Umidità relativa superficiale ammissibile 80 %

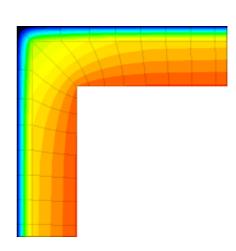
Mese	θi	θe	θsi	θ _{acc}	Verifica
ottobre	20,0	13,5	18,4	17,2	POSITIVA
novembre	20,0	7,8	17,0	14,9	POSITIVA
dicembre	20,0	4,1	16,1	12,5	POSITIVA

	- / -	, -	, -	, -	
dicembre	20,0	4,1	16,1	12,5	POSITIVA
gennaio	20,0	2,2	15,6	12,3	POSITIVA
febbraio	20,0	4,3	16,1	11,9	POSITIVA
marzo	20,0	8,7	17,2	12,6	POSITIVA
aprile	20,0	13,1	18,3	14,5	POSITIVA

θ_{i}	Temperatura interna al locale	°C
θ_{e}	Temperatura esterna	°C
θ_{si}	Temperatura superficiale interna in luogo del ponte termico	°C
θ_{acc}	Temperatura minima accettabile per scongiurare il fenomeno di condensa	°C

Descrizione del ponte termico: C - Angolo tra pareti


Codice: Z3


Fattore di temperature f_{rsi} 0,874 -

Riferimento UNI EN ISO 14683 e UNI EN ISO 10211

Note

C1 - Giunto tre due pareti con isolamento esterno (sporgente) Trasmittanza termica lineica di riferimento (ϕ e) = -0,090 W/mK.

Caratteristiche

Spessore muro	Smur	283,0	mm
Trasmittanza termica parete	Upar	0,203	W/m²K
Conduttività termica muro	λmur	0.250	W/mK

Verifica temperatura critica

<u>Condizioni interne:</u> <u>Condizioni esterne:</u>

Classe concentrazione del vapore **0,004** kg/m³ Temperature medie mensili - °C

Temperatura interna periodo di riscaldamento **20,0** °C

Umidità relativa superficiale ammissibile **80** %

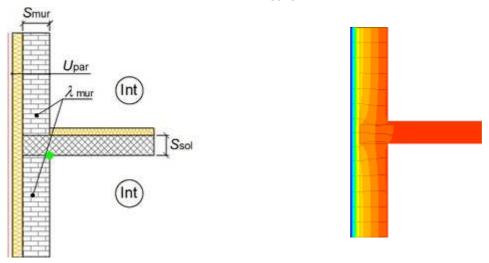
Mese	θi	θе	θsi	Өасс	Verifica
ottobre	20,0	13,5	19,2	17,2	POSITIVA
novembre	20,0	7,8	18,5	14,9	POSITIVA
dicembre	20,0	4,1	18,0	12,5	POSITIVA
gennaio	20,0	2,2	17,8	12,3	POSITIVA
febbraio	20,0	4,3	18,0	11,9	POSITIVA
marzo	20,0	8,7	18,6	12,6	POSITIVA
aprile	20,0	13,1	19,1	14,5	POSITIVA

Θ_{i}	Temperatura interna al locale	°C
θ_{e}	Temperatura esterna	°C
θ_{si}	Temperatura superficiale interna in luogo del ponte termico	°C
θ_{acc}	Temperatura minima accettabile per scongiurare il fenomeno di condensa	°C

<u>Descrizione del ponte termico:</u> *IF - Parete - Solaio interpiano*

Codice: Z4

Tipologia IF - Parete - Solaio interpiano


Trasmittanza termica lineica di calcolo 0,008 W/mK Trasmittanza termica lineica di riferimento 0,015 W/mK Fattore di temperature f_{rsi} 0,939 -

Riferimento UNI EN ISO 14683 e UNI EN ISO 10211

IF8 - Giunto parete con isolamento esterno continuo - solaio interpiano con isolamento superiore

Note

Trasmittanza termica lineica di riferimento (ϕ e) = 0,015 W/mK.

Caratteristiche

Spessore solaio	Ssol	160,0	mm
Spessore muro	Smur	283,0	mm
Trasmittanza termica parete	Upar	0,203	W/m²K
Conduttività termica muro	λmur	0,250	W/mK

Verifica temperatura critica

<u>Condizioni interne:</u> <u>Condizioni esterne:</u>

Classe concentrazione del vapore **0,004** kg/m³ Temperature medie mensili Temperatura interna periodo di riscaldamento **20,0** °C

Umidità relativa superficiale ammissibile 80 %

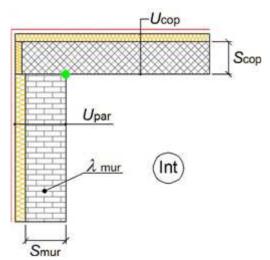
Mese	θi	θe	θsi	Өасс	Verifica
ottobre	20,0	13,5	19,6	17,2	POSITIVA
novembre	20,0	7,8	19,3	14,9	POSITIVA
dicembre	20,0	4,1	19,0	12,5	POSITIVA
gennaio	20,0	2,2	18,9	12,3	POSITIVA
febbraio	20,0	4,3	19,0	11,9	POSITIVA
marzo	20,0	8,7	19,3	12,6	POSITIVA
aprile	20,0	13,1	19,6	14,5	POSITIVA

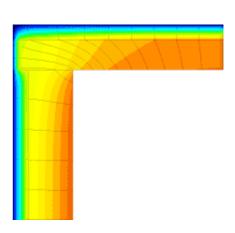
Legenda simboli

θ_{i}	Temperatura interna al locale	°C
θ_{e}	Temperatura esterna	°C
θ_{si}	Temperatura superficiale interna in luogo del ponte termico	°C
$ heta_{ ext{acc}}$	Temperatura minima accettabile per scongiurare il fenomeno di condensa	°C

°C

Descrizione del ponte termico: R - Parete - Copertura


Codice: **Z5**


Fattore di temperature f_{rsi} 0,826 -

Riferimento UNI EN ISO 14683 e UNI EN ISO 10211

Note

R1b - Giunto parete con isolamento esterno – copertura con correzione Trasmittanza termica lineica di riferimento (ϕ e) = 0,048 W/mK.

Caratteristiche

Spessore copertura	Scop	200,0	mm
Spessore muro	Smur	283,0	mm
Trasmittanza termica copertura	Ucop	0,185	W/m²K
Trasmittanza termica parete	Upar	0,203	W/m²K
Conduttività termica muro	λmur	0,250	W/mK

Verifica temperatura critica

<u>Condizioni interne:</u> <u>Condizioni esterne:</u>

Classe concentrazione del vapore **0,004** kg/m³ Temperature medie mensili - °C

Temperatura interna periodo di riscaldamento 20,0 °C Umidità relativa superficiale ammissibile 80 %

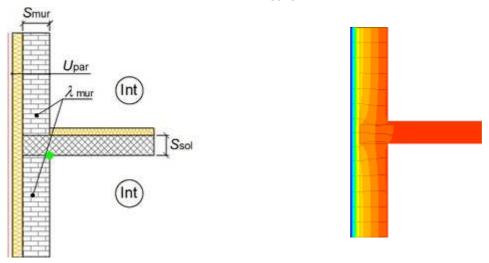
Mese	θί	θ _e	θsi	θ _{acc}	Verifica
ottobre	20,0	13,5	18,9	17,2	POSITIVA
novembre	20,0	7,8	17,9	14,9	POSITIVA
dicembre	20,0	4,1	17,2	12,5	POSITIVA
gennaio	20,0	2,2	16,9	12,3	POSITIVA
febbraio	20,0	4,3	17,3	11,9	POSITIVA
marzo	20,0	8,7	18,0	12,6	POSITIVA
aprile	20,0	13,1	18,8	14,5	POSITIVA

θ_{i}	Temperatura interna al locale	°C
θ_{e}	Temperatura esterna	°C
θ_{si}	Temperatura superficiale interna in luogo del ponte termico	°C
θ_{acc}	Temperatura minima accettabile per scongiurare il fenomeno di condensa	°C

Descrizione del ponte termico: GF - Parete - Pavimento

Codice: Z6

Tipologia IF - Parete - Solaio interpiano


Trasmittanza termica lineica di calcolo 0,009 W/mK Trasmittanza termica lineica di riferimento 0,017 W/mK Fattore di temperature f_{rsi} 0,938 -

Riferimento UNI EN ISO 14683 e UNI EN ISO 10211

IF8 - Giunto parete con isolamento esterno continuo - solaio interpiano con isolamento superiore

Note

Trasmittanza termica lineica di riferimento (ϕ e) = 0,017 W/mK.

Caratteristiche

Spessore solaio	Ssol	200,0	mm
Spessore muro	Smur	283,0	mm
Trasmittanza termica parete	Upar	0,203	W/m²K
Conduttività termica muro	λmur	0,250	W/mK

Verifica temperatura critica

<u>Condizioni interne:</u> <u>Condizioni esterne:</u>

Classe concentrazione del vapore **0,004** kg/m³ Temperature medie mensili - °C

Temperatura interna periodo di riscaldamento **20,0** °C Umidità relativa superficiale ammissibile **80** %

Mese	θi	θе	θsi	Ө асс	Verifica
ottobre	20,0	13,5	19,6	17,2	POSITIVA
novembre	20,0	7,8	19,2	14,9	POSITIVA
dicembre	20,0	4,1	19,0	12,5	POSITIVA
gennaio	20,0	2,2	18,9	12,3	POSITIVA
febbraio	20,0	4,3	19,0	11,9	POSITIVA
marzo	20,0	8,7	19,3	12,6	POSITIVA
aprile	20,0	13,1	19,6	14,5	POSITIVA

θ_{i}	Temperatura interna al locale	°C
θ_{e}	Temperatura esterna	°C
θ_{si}	Temperatura superficiale interna in luogo del ponte termico	°C
θ_{acc}	Temperatura minima accettabile per scongiurare il fenomeno di condensa	°C

FABBISOGNO DI POTENZA TERMICA INVERNALE secondo UNI EN 12831

Dati climatici della località:

Località	Desenzano del Garda	
Provincia	Brescia	
Altitudine s.l.m.	<i>67</i>	m
Gradi giorno	2229	
Zona climatica	E	
Temperatura esterna di progetto	-6.5	°C

Dati geometrici dell'intero edificio:

Superficie in pianta netta	66,94	m^2
Superficie esterna lorda	293,64	m^2
Volume netto	197,23	m^3
Volume lordo	333,16	m^3
Rapporto S/V	0,88	m ⁻¹

Opzioni di calcolo:

Metodologia di calcolo Vicini presenti Coefficiente di sicurezza adottato 1,10 -

Coefficienti di esposizione solare:

Ovest: 1,10

Nord: 1,20

Nord-Ovest: 1,15 Nord-Est: 1,20

Est: 1,15

Sud-Ovest: **1,05** Sud-Est: 1,10

Sud: 1,00

RIASSUNTO DISPERSIONI DELLE ZONE

Opzioni di calcolo:

Metodologia di calcolo *Vicini presenti*

Coefficiente di sicurezza adottato 1,10 -

Dati geometrici delle zone termiche:

Zona	Descrizione	V [m³]	V _{netto} [m³]	S _u [m²]	S _{lorda} [m²]	S [m²]	S/V [-]
1	Zona	333,16	197,23	66,94	95,19	293,64	0,88

Totale: 333,16 197,23 66,94 95,19 293,64 0,88

Fabbisogno di potenza delle zone termiche

Zona	Descrizione	Φ _{tr} [W]	Ф _{ve} [W]	Ф _{rh} [W]	Ф _н [W]	Ф _{hl sic} [W]
1	Zona	2178	1181	0	<i>335</i> 9	3695

Totale: 2178 1181 0 3359 3695

Legenda simboli

 $\begin{array}{ll} V & \quad \ \ Volume \ lordo \\ V_{netto} & \quad \ \ Volume \ netto \end{array}$

 $S_u \qquad \qquad \text{Superficie in pianta netta} \\ S_{\text{lorda}} \qquad \qquad \text{Superficie in pianta lorda}$

S Superficie esterna lorda (senza strutture di tipo N)

S/V Fattore di forma

 $\begin{array}{ll} \Phi_{tr} & \text{Potenza dispersa per trasmissione} \\ \Phi_{ve} & \text{Potenza dispersa per ventilazione} \\ \Phi_{rh} & \text{Potenza dispersa per intermittenza} \end{array}$

 Φ_{hl} Potenza totale dispersa

FABBISOGNO DI ENERGIA UTILE INVERNALE secondo UNI EN ISO 13790 e UNI TS 11300-1

Dati climatici della località:

Località **Desenzano del Garda**

Provincia *Brescia*

Altitudine s.l.m. 67 m
Gradi giorno 2229
Zona climatica E
Temperatura esterna di progetto -6,5 °C

Irradiazione solare giornaliera media mensile:

Esposizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Nord	MJ/m²	1,4	2,3	3,6	5,5	8,4	10,2	9,5	6,8	4,5	2,9	1,6	1,2
Nord-Est	MJ/m²	1,6	3,0	5,5	8,2	11,7	13,5	13,0	10,3	7,3	3,9	1,8	1,3
Est	MJ/m²	3,9	6,1	9,1	11,3	14,5	16,0	15,9	13,6	11,5	6,8	3,6	3,4
Sud-Est	MJ/m²	7,3	9,3	11,5	11,9	13,5	13,8	14,1	13,6	13,4	9,3	5,8	6,7
Sud	MJ/m²	9,4	11,2	12,1	10,8	11,0	10,7	11,0	11,5	13,1	10,6	7,2	8,8
Sud-Ovest	MJ/m²	7,3	9,3	11,5	11,9	13,5	13,8	14,1	13,6	13,4	9,3	5,8	6,7
Ovest	MJ/m²	3,9	6,1	9,1	11,3	14,5	16,0	15,9	13,6	11,5	6,8	3,6	3,4
Nord-Ovest	MJ/m²	1,6	3,0	5,5	8,2	11,7	13,5	13,0	10,3	7,3	3,9	1,8	1,3
Orizz. Diffusa	MJ/m²	1,9	3,1	4,8	6,9	8,5	8,7	8,3	7,4	5,6	4,1	2,3	1,6
Orizz. Diretta	MJ/m²	2,7	4,6	7,5	9,5	13,4	15,9	15,9	12,7	10,3	4,9	2,2	2,3

Zona 1 : Zona

Temperature esterne medie e numero di giorni nella stagione considerata:

Descrizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Temperatura	°C	2,2	4,3	8,7	12,1	-	-	-	-	-	12,0	7,8	4,1
Nº giorni	-	31	28	31	15	-	-	1	-	1	17	30	31

Opzioni di calcolo:

Metodologia di calcolo *Vicini presenti*

Stagione di calcolo **Convenzionale** dal **15 ottobre** al **15 aprile**

Durata della stagione 183 giorni

Dati geometrici:

Superficie in pianta netta	66,94	m^2
Superficie esterna lorda	293,64	m^2
Volume netto	197,23	m^3
Volume lordo	333,16	m^3
Rapporto S/V	0,88	m ⁻¹

FABBISOGNO DI ENERGIA UTILE STAGIONE INVERNALE Sommario perdite e apporti

Zona 1: Zona

Categoria DPR 412/93	E.1 (3)	-	Superficie esterna	293,64	m^2
Superficie utile	66,94	m^2	Volume lordo	333,16	m^3
Volume netto	197,23	m^3	Rapporto S/V	0,88	m ⁻¹
			_		

Temperatura interna 20,0 °C Capacità termica specifica 165 kJ/m 2 K Apporti interni 6,00 W/m 2 Superficie totale 95,19 m 2

Dispersioni, apporti e fabbisogno di energia utile:

Mese	Q _{H,tr} [kWh]	Q _{н,r} [kWh]	Q _{н,ve} [kWh]	Q _{н,ht} [kWh] _t	Q _{sol,k,w} [kWh]	Q _{int} [kWh]	Q _{gn} [kWh]	т [h]	η и, н [-]	Q _{H,nd} [kWh]
Ottobre	219	9	38	266	144	164	308	50,4	0,749	<i>35</i>
Novembre	630	18	102	<i>750</i>	136	289	425	50,4	0,962	341
Dicembre	851	23	137	1011	134	299	433	50,4	0,986	584
Gennaio	955	22	154	1130	152	299	451	50,4	0,989	684
Febbraio	749	23	122	894	207	270	477	50,4	0,969	431
Marzo	<i>577</i>	28	97	703	344	299	643	50,4	0,848	158
Aprile	189	12	33	234	198	145	343	50,4	0,636	16

Totali 4169 135 683 4987 1316 1764 3080 2249

Legenda simboli

 $Q_{H,tr}$ Energia dispersa per trasmissione dedotti gli apporti solari diretti attravesto le strutture opache ($Q_{sol,k,H}$)

 $\begin{array}{ll} Q_{\text{H,r}} & \text{Energia dispersa per extraflusso} \\ Q_{\text{H,ve}} & \text{Energia dispersa per ventilazione} \\ Q_{\text{H,ht}} & \text{Totale energia dispersa} = Q_{\text{H,tr}} + Q_{\text{H,ve}} \\ Q_{\text{sol,k,w}} & \text{Apporti solari attraverso gli elementi finestrati} \end{array}$

Q_{int} Apporti interni

 $Q_{gn} \qquad \qquad \text{Totale apporti gratuiti = } Q_{sol} \, + \, Q_{int}$

 $Q_{H,nd}$ Energia utile τ Costante di tempo

η_{u, H} Fattore di utilizzazione degli apporti termici

FABBISOGNO DI ENERGIA UTILE ESTIVA secondo UNI EN ISO 13790 e UNI TS 11300-1

Dati climatici della località:

Località Desenzano del Garda

Provincia **Brescia**

Altitudine s.l.m. 67 m
Gradi giorno 2229
Zona climatica E
Temperatura esterna di progetto -6,5 °C

Irradiazione solare giornaliera media mensile:

Esposizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Nord	MJ/m²	1,4	2,3	3,6	5,5	8,4	10,2	9,5	6,8	4,5	2,9	1,6	1,2
Nord-Est	MJ/m²	1,6	3,0	5,5	8,2	11,7	13,5	13,0	10,3	7,3	3,9	1,8	1,3
Est	MJ/m²	3,9	6,1	9,1	11,3	14,5	16,0	15,9	13,6	11,5	6,8	3,6	3,4
Sud-Est	MJ/m²	7,3	9,3	11,5	11,9	13,5	13,8	14,1	13,6	13,4	9,3	5,8	6,7
Sud	MJ/m²	9,4	11,2	12,1	10,8	11,0	10,7	11,0	11,5	13,1	10,6	7,2	8,8
Sud-Ovest	MJ/m²	7,3	9,3	11,5	11,9	13,5	13,8	14,1	13,6	13,4	9,3	5,8	6,7
Ovest	MJ/m²	3,9	6,1	9,1	11,3	14,5	16,0	15,9	13,6	11,5	6,8	3,6	3,4
Nord-Ovest	MJ/m²	1,6	3,0	5,5	8,2	11,7	13,5	13,0	10,3	7,3	3,9	1,8	1,3
Orizz. Diffusa	MJ/m²	1,9	3,1	4,8	6,9	8,5	8,7	8,3	7,4	5,6	4,1	2,3	1,6
Orizz. Diretta	MJ/m²	2,7	4,6	7,5	9,5	13,4	15,9	15,9	12,7	10,3	4,9	2,2	2,3

Zona 1 : Zona

Temperature esterne medie e numero di giorni nella stagione considerata:

Descrizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Temperatura	°C	-	-	10,9	13,1	17,7	22,1	23,8	22,6	18,6	14,7	-	-
Nº giorni	-	-	-	2	30	31	30	31	31	30	15	-	-

Opzioni di calcolo:

Metodologia di calcolo *Vicini presenti*

Stagione di calcolo Reale dal 30 marzo al 15 ottobre

Durata della stagione 200 giorni

Dati geometrici:

Superficie in pianta netta	66,94	m^2
Superficie esterna lorda	293,64	m^2
Volume netto	197,23	m^3
Volume lordo	333,16	m^3
Rapporto S/V	0,88	m^{-1}

FABBISOGNO DI ENERGIA UTILE STAGIONE ESTIVA Sommario perdite e apporti

Zona 1: Zona

Categoria DPR 412/93	E.1 (3)	-	Superficie esterna	293,64	m^2	
Superficie utile	66,94	m^2	Volume lordo	333,16	m^3	
Volume netto	197,23	m^3	Rapporto S/V	0,88	m ⁻¹	
			Capacità termica			٦.

Temperatura interna 26,0 °C $\frac{\text{Capacita termica}}{\text{specifica}}$ $\frac{165}{\text{specifica}}$ kJ/m²K Apporti interni 6,00 W/m² Superficie totale 95,19 m²

Dispersioni, apporti e fabbisogno di energia utile:

Mese	Q _{C,tr} [kWh]	Q _{C,r} [kWh]	Q _{C,ve} [kWh]	Q _{C,ht} [kWh] _t	Q _{sol,k,w} [kWh]	Q _{int} [kWh]	Q _{gn} [kWh]	т [h]	η ս, c [-]	Q _{C,nd} [kWh]
Marzo	51	2	8	61	12	19	31	50,4	0,508	0
Aprile	648	27	108	<i>782</i>	199	289	488	50,4	0,621	2
Maggio	409	<i>30</i>	<i>72</i>	511	259	299	<i>558</i>	50,4	0,938	<i>7</i> 9
Giugno	159	27	33	218	255	289	544	50,4	1,000	326
Luglio	68	31	19	119	266	299	565	50,4	1,000	447
Agosto	135	29	29	194	229	299	<i>528</i>	50,4	1,000	335
Settembre	342	27	62	431	205	289	494	50,4	0,952	83
Ottobre	283	11	47	342	63	145	208	50,4	0,606	1

Totali 2095 186 377 2659 1489 1928 3417 1272

Legenda simboli

 $Q_{C,tr}$ Energia dispersa per trasmissione dedotti gli apporti solari diretti attravesto le strutture opache $(Q_{sol,k,C})$

 $Q_{\text{C,r}}$ Energia dispersa per extraflusso $Q_{\text{C,ve}}$ Energia dispersa per ventilazione $Q_{\text{C,ht}}$ Totale energia dispersa = $Q_{\text{C,tr}} + Q_{\text{C,ve}}$

Q_{sol,k,w} Apporti solari attraverso gli elementi finestrati

Q_{int} Apporti interni

 Q_{gn} Totale apporti gratuiti = Q_{sol} + Q_{int}

Q_{C,nd} Energia utile T Costante di tempo

 $\eta_{u,\,C}$ Fattore di utilizzazione delle dispersioni termiche

FABBISOGNO DI ENERGIA PRIMARIA secondo UNI/TS 11300-2 e UNI/TS 11300-4

Zona 1 : Zona

Modalità di funzionamento

Circuito Riscaldamento Zona

Intermittenza

Regime di funzionamento Continuo

SERVIZIO RISCALDAMENTO (impianto idronico)

Rendimenti stagionali dell'impianto:

Descrizione	Simbolo	Valore	u.m.
Rendimento di emissione	η _{H,e}	94,7	%
Rendimento di regolazione	η _{H,rg}	98,0	%
Rendimento di distribuzione utenza	η _{H,du}	99,0	%
Rendimento di generazione (risp. a en. pr. non rinn.)	η _{H,gen,p,nren}	129,0	%
Rendimento di generazione (risp. a en. pr. totale)	η _{H,gen,p,tot}	63,9	%
Rendimento globale medio stagionale (risp. a en. pr. non rinn.)	$\eta_{H,g,p,nren}$	116,4	%
Rendimento globale medio stagionale (risp. a en. pr. totale)	$\eta_{H,g,p,tot}$	58,1	%

Dettaglio rendimenti dei singoli generatori:

Generatore	ŋ H,gen,ut	η H,gen,p,nren	η _{H,gen,p,tot}
	[%]	[%]	[%]
Pompa di calore - secondo UNI/TS 11300-4	251,5	129,0	63,9

Legenda simboli

 $\eta_{\text{H,gen,ut}}$ Rendimento di generazione rispetto all'energia utile

 $\eta_{\text{H,gen,p,nren}}$ Rendimento di generazione rispetto all'energia primaria non rinnovabile

 $\eta_{\text{H},\text{gen},\text{p},\text{tot}}$ Rendimento di generazione rispetto all'energia primaria totale

Dati per circuito

Circuito Riscaldamento Zona

Caratteristiche sottosistema di emissione:

Tipo di terminale di erogazione **Bocchette in sistemi ad aria calda**

Potenza nominale dei corpi scaldanti 12000 W
Fabbisogni elettrici 90 W
Rendimento di emissione 92,0 %

Caratteristiche sottosistema di regolazione:

Tipo Solo per singolo ambiente
Caratteristiche P banda proporzionale 1 °C

Rendimento di regolazione 98,0 %

Caratteristiche sottosistema di distribuzione utenza:

Metodo di calcolo Semplificato

Tipo di impianto Autonomo, edificio condominiale
Posizione impianto Impianto a piano intermedio

Posizione tubazioni

Isolamento tubazioni Isolamento con spessori conformi alle prescrizioni del

DPR n. 412/93

Numero di piani -

Fattore di correzione

Rendimento di distribuzione utenza

99,0 %

Fabbisogni elettrici

0 W

SOTTOSISTEMA DI GENERAZIONE

Dati generali:

Servizio **Riscaldamento**Tipo di generatore **Pompa di calore**

Metodo di calcolo secondo UNI/TS 11300-4

Marca/Serie/Modello Mitsubishi MUZ-AP35 (n.3)

Tipo di pompa di calore *Elettrica*

Temperatura di disattivazione $\theta_{H,off}$ 20,0 °C (per riscaldamento)

Sorgente fredda Aria esterna

Temperatura di funzionamento (cut-off) minima -25,0 °C

massima **45,0** °C

Temperatura di funzionamento (cut-off) minima **16,0** °C

massima **21,0** °C

Temperatura della sorgente calda (riscaldamento) 20,0 °C

Prestazioni dichiarate:

COPe Coefficiente di prestazione 3,9 Potenza utile P_{u} 12,00 kW Potenza elettrica assorbita 3,09 kW Pass Temperatura della sorgente fredda °C θ_{f} 7 ٥C Temperatura della sorgente calda 20 θ_{c}

Fattori correttivi della pompa di calore:

Fattore di correzione Cd 0,25 -

Fattore minimo di modulazione Fmin 0,50 -

CR	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
Fc	0,75	0,80	0,85	0,90	0,95	1,00	1,00	1,00	1,00	1,00	1,00

Legenda simboli

CR Fattore di carico macchina della pompa di calore Fc Fattore correttivo della pompa di calore

Temperatura dell'acqua del generatore di calore:

Generatore di calore a temperatura scorrevole

Tipo di circuito Collegamento diretto

		GENERAZIONE							
Mese giorni		θgn,avg [°C]	θgn,flw [°C]	θgn,ret [°C]					
ottobre	17	0,0	0,0	0,0					
novembre	30	0,0	0,0	0,0					
dicembre	31	0,0	0,0	0,0					
gennaio	31	0,0	0,0	0,0					
febbraio	28	0,0	0,0	0,0					
marzo	31	0,0	0,0	0,0					
aprile	15	0,0	0,0	0,0					

Legenda simboli

 $\begin{array}{ll} \theta_{gn,avg} & \text{Temperatura media del generatore di calore} \\ \theta_{gn,flw} & \text{Temperatura di mandata del generatore di calore} \\ \theta_{gn,ret} & \text{Temperatura di ritorno del generatore di calore} \end{array}$

Vettore energetico:

Tipo Energia elettrica

Fattore di conversione in energia primaria (rinnovabile) $f_{p,ren}$ 0,470 - Fattore di conversione in energia primaria (non rinnovabile) $f_{p,nren}$ 1,950 - Fattore di conversione in energia primaria f_p 2,420 -

Fattore di emissione di CO₂ 0,4600 kg_{CO2}/kWh

RISULTATI DI CALCOLO MENSILI

Risultati mensili servizio riscaldamento – impianto idronico

Zona 1 : Zona

Fabbisogni termici ed elettrici

					Fabbisog	ni termici			
Mese	gg	Q _{н,nd} [kWh]	Q _{H,sys,out} [kWh]	Q' _{H,sys,out} [kWh]	Q _{H,sys,out,int}	Q _{H,sys,out,cont}	Q _{H,sys,out,corr} [kWh]	Q _{H,gen,out} [kWh]	Q _{H,gen,in} [kWh]
gennaio	31	684	684	684	684	684	684	744	<i>33</i> 6
febbraio	28	431	431	431	431	431	431	470	193
marzo	31	158	158	158	158	158	158	172	<i>55</i>
aprile	15	16	16	16	16	16	16	18	4
maggio	-	-	-	-	-	-	-	-	-
giugno	-	-	-	-	-	-	-	-	-
luglio	-	-	-	-	-	-	-	-	-
agosto	-	-	-	-	-	-	-	-	-
settembre		-		-	-	-	-	-	-
ottobre	17	35	35	35	35	35	35	38	8
novembre	30	341	341	341	341	341	341	371	120
dicembre	31	584	584	584	584	584	584	636	258
TOTALI	183	2249	2249	2249	2249	2249	2249	2449	974

Legenda simboli

gg Giorni compresi nel periodo di calcolo per riscaldamento

 $Q_{H,nd}$ Fabbisogno di energia termica utile del fabbricato (ventilazione naturale) $Q_{H,sys,out}$ Fabbisogno di energia termica utile dell'edificio (ventilazione meccanica)

 $Q'_{H,sys,out}$ Fabbisogno ideale netto

Q_{H,sys,out,int}
Q_{H,sys,out,cont}
Q_{H,sys,out}
Q_{H,gen,out}
Fabbisogno corretto per intermittenza
Fabbisogno corretto per contabilizzazione
Fabbisogno corretto per ulteriori fattori
Fabbisogno in uscita dalla generazione
Fabbisogno in ingresso alla generazione

			Fabbisogr	ni elettrici	
Mese	99	Q _{H,em,aux} [kWh]	Q _{H,du,aux} [kWh]	Q _{H,dp,aux} [kWh]	Q _{H,gen,aux} [kWh]
gennaio	31	5	0	0	0
febbraio	28	3	0	0	0
marzo	31	1	0	0	0
aprile	15	0	0	0	0
maggio	-	-	-	-	-
giugno	-		1		-
luglio	-	-	-	-	-
agosto	-		1		-
settembre	-		1		-
ottobre	17	0	0	0	0
novembre	30	3	0	0	0
dicembre	31	4	0	0	0
TOTALI	183	17	0	0	0

Legenda simboli

gg Giorni compresi nel periodo di calcolo per riscaldamento

 $Q_{H,em,aux}$ Fabbisogno elettrico ausiliari emissione

 $\begin{array}{ll} Q_{\text{H,du,aux}} & \quad & \text{Fabbisogno elettrico ausiliari distribuzione di utenza} \\ Q_{\text{H,dp,aux}} & \quad & \text{Fabbisogno elettrico ausiliari distribuzione primaria} \end{array}$

 $Q_{\text{H},\text{gen},\text{aux}} \qquad \text{Fabbisogno elettrico ausiliari generazione}$

Dettagli impianto termico

Mese	99	η н,гд [%]	η н,а [%]	ŋ _{н,s} [%]	η н,др [%]	η _{H,gen,p,nren} [%]	η _{H,gen,p,tot} [%]	η _{Η,g,p,nren} [%]	η н,g,p,tot [%]
gennaio	31	98,0	99,0	100,0	100,0	113,8	59,1	102,9	<i>53,7</i>
febbraio	28	98,0	99,0	100,0	100,0	124,6	62,6	112,6	56,9
marzo	31	98,0	99,0	100,0	100,0	161,4	72,9	145,1	66,2
aprile	15	98,0	99,0	100,0	100,0	214,5	84,7	191,5	76,7
maggio	-	-	-	-	-	-	-	-	-
giugno	-	-	-	-	-	-	-	-	-
luglio	-	-	-		1	-	-	-	-
agosto	1				-	-		-	-
settembre	-	1	-	1	1	-	1	-	-
ottobre	17	98,0	99,0	100,0	100,0	246,3	90,4	219,0	81,8
novembre	30	98,0	99,0	100,0	100,0	158,8	72,3	142,8	65,6
dicembre	31	98,0	99,0	100,0	100,0	126,3	63,1	114,0	57,3

Legenda simboli

gg Giorni compresi nel periodo di calcolo per riscaldamento

 $\begin{array}{ll} \eta_{\text{H,rg}} & \text{Rendimento mensile di regolazione} \\ \eta_{\text{H,d}} & \text{Rendimento mensile di distribuzione} \\ \eta_{\text{H,s}} & \text{Rendimento mensile di accumulo} \end{array}$

η_{H,dp} Rendimento mensile di distribuzione primaria

 $\eta_{H,gen,p,nren}$ Rendimento mensile di generazione rispetto all'energia primaria non rinnovabile

 $\eta_{H,gen,p,tot}$ Rendimento mensile di generazione rispetto all'energia primaria totale

 $\eta_{H,g,p,nren}$ Rendimento globale medio mensile rispetto all'energia primaria non rinnovabile

<u>Dettagli generatore</u>: 1 - Pompa di calore

Mese	99	Q _{H,gn,out} [kWh]	Q _{H,gn,in} [kWh]	η _{Η,gen,ut} [%]	η _{H,gen,p,nren} [%]	η _{H,gen,p,tot} [%]	Combustibile [kWh]
gennaio	31	744	336	221,9	113,8	59,1	0
febbraio	28	470	193	243,1	124,6	62,6	0
marzo	31	172	55	314,8	161,4	72,9	0
aprile	15	18	4	418,2	214,5	84,7	0
maggio	-	-	-	-	-	-	-
giugno	-	-	-	-	-	-	-
luglio	-	-	-	-	-	-	-
agosto	-	-	-	-	1	-	-
settembre	-		-	-	-	-	-
ottobre	17	38	8	480,3	246,3	90,4	0
novembre	30	371	120	309,6	158,8	72,3	0
dicembre	31	636	258	246,2	126,3	63,1	0

Mese	99	COP [-]
gennaio	31	2,22
febbraio	28	2,43
marzo	31	3,15
aprile	15	4,18
maggio	-	-
giugno	-	-
luglio	-	-
agosto	1	1
settembre	1	1
ottobre	17	4,80
novembre	30	3,10
dicembre	31	2,46

 $\begin{array}{ll} gg & Giorni \ compresi \ nel \ periodo \ di \ calcolo \ per \ riscaldamento \\ Q_{H,gn,out} & Energia \ termica \ fornita \ dal \ generatore \ per \ riscaldamento \\ Q_{H,gn,in} & Energia \ termica \ in \ ingresso \ al \ generatore \ per \ riscaldamento \\ \eta_{H,gen,ut} & Rendimento \ mensile \ del \ generatore \ rispetto \ all'energia \ utile \end{array}$

η_{H,gen,p,nren} Rendimento mensile del generatore rispetto all'energia primaria non rinnovabile

 $\eta_{H,gen,p,tot}$ Rendimento mensile del generatore rispetto all'energia primaria totale

Combustibile Consumo mensile di combustibile

COP Coefficiente di effetto utile medio mensile

Fabbisogno di energia primaria impianto idronico

Mese	gg	Q _{H,gn,in} [kWh]	Q _{H,aux} [kWh]	Q _{H,p,nren} [kWh]	Q _{H,p,tot} [kWh]
gennaio	31	336	341	664	1273
febbraio	28	193	196	383	<i>758</i>
marzo	31	55	56	109	238
aprile	15	4	4	8	21
maggio	-	-	-	-	-
giugno	-	-	-	-	-
luglio	-	-	-	-	-
agosto	-	-	-	-	-
settembre	-	-	-	-	-
ottobre	17	8	8	16	43
novembre	30	120	122	239	520
dicembre	31	258	263	512	1019
TOTALI	183	974	991	1931	3872

Legenda simboli

gg Giorni compresi nel periodo di calcolo per riscaldamento

Q_{H,gn,in} Energia termica totale in ingresso al sottosistema di generazione per riscaldamento

Q_{H,aux} Fabbisogno elettrico totale per riscaldamento

Q_{H,p,nren} Fabbisogno di energia primaria non rinnovabile per riscaldamento

Q_{H,p,tot} Fabbisogno di energia primaria totale per riscaldamento

FABBISOGNO DI ENERGIA PRIMARIA

secondo UNI/TS 11300-3

Zona 1 : Zona

Modalità di funzionamento dell'impianto:

Continuato

SERVIZIO RAFFRESCAMENTO

Rendimenti stagionali dell'impianto:

Descrizione	Simbolo	Valore	u.m.
Rendimento di emissione	η _{C,e}	97,0	%
Rendimento di regolazione	η _{C,rg}	98,0	%
Rendimento di distribuzione	$\eta_{C,d}$	100,0	%
Rendimento di generazione (risp. a en. utile)	η _{C,gen,ut}	354,0	%
Rendimento di generazione (risp. a en. pr. non rinn.)	$\eta_{\text{C,gen,p,nren}}$	181,5	%
Rendimento di generazione (risp. a en. pr. non tot.)	η _{C,gen,p,tot}	146,3	%
Rendimento globale medio stagionale (risp. a en. pr. non rinn.)	$\eta_{C,g,p,nren}$	167,5	%
Rendimento globale medio stagionale (risp. a en. pr. tot.)	$\eta_{C,g,p,tot}$	135,0	%

Caratteristiche sottosistema di emissione:

Tipo di terminale di erogazione

Terminali ad espansione diretta, unità interne sistemi

split, ecc

Fabbisogni elettrici 90 W

Caratteristiche sottosistema di regolazione:

Tipo Controllo singolo ambiente

Caratteristiche Regolazione modulante (banda 1°C)

SOTTOSISTEMA DI GENERAZIONE

Dati generali:

Servizio Raffrescamento
Tipo di generatore Pompa di calore

Metodo di calcolo secondo UNI/TS 11300-3

Marca/Serie/Modello Mitsubishi MUZ-AP35 (n.3)

Tipo di pompa di calore *Elettrica*

Potenza frigorifera nominale $\Phi_{gn,nom}$ **10,50** kW

Sorgente unità esterna Aria

Temperatura bulbo secco aria esterna 0,0 °C

Sorgente unità interna Aria

Temperatura bulbo umido aria 19,0 °C

Prestazioni dichiarate:

Fk [%]	100%	75%	50%	25%	20%	15%	10%	5%	2%	1%
EER [-]	3,54	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Legenda simboli

Fk Fattore di carico della pompa di calore EER Prestazione della pompa di calore

Dati unità esterna:

Percentuale portata d'aria dei canali 100,0 % (valore rispetto alla portata nominale)

Assenza di setti insonorizzati

Dati unità interna:

Velocità ventilatore Alta

Percentuale portata d'aria nei canali 100,0 % (valore rispetto alla portata nominale)

Lunghezza tubazione di aspirazione **7,50** m

Fabbisogni elettrici:

Potenza elettrica degli ausiliari 0 W

Vettore energetico:

Tipo Energia elettrica

Fattore di conversione in energia primaria (rinnovabile) $f_{p,ren}$ 0,470 - Fattore di conversione in energia primaria (non rinnovabile) $f_{p,nren}$ 1,950 - Fattore di conversione in energia primaria f_p 2,420 -

Fattore di emissione di CO₂ 0,4600 kg_{CO2}/kWh

RISULTATI DI CALCOLO MENSILI

Risultati mensili servizio raffrescamento

Zona 1 : Zona

Fabbisogni termici

Mese	99	Q _{C,nd} [kWh]	Q _{C,sys,out} [kWh]	Q _{C,sys,out,cont}	Q _{C,sys,out,corr} [kWh]	Q _{cr} [kWh]	Q _v [kWh]	Q _{C,gen,out} [kWh]	Q _{C,gen,in} [kWh]
gennaio	-		-	-	-			-	
febbraio	-	-	-	-	-	-	-	-	-
marzo	2	0	0	0	0	0	0	0	0
aprile	30	2	2	2	2	2	0	2	1
maggio	31	<i>7</i> 9	<i>7</i> 9	<i>7</i> 9	<i>7</i> 9	83	0	83	23
giugno	30	326	326	326	326	343	0	343	97
luglio	31	447	447	447	447	470	0	470	133
agosto	31	335	335	335	335	352	0	352	99
settembre	30	83	83	83	83	87	0	87	25
ottobre	15	1	1	1	1	1	0	1	0
novembre	_	-	-	_	-	-	-	-	-
dicembre	_	-	-	_	-	-	-	-	-
TOTALI	200	1272	1272	1272	1272	1338	0	1338	378

gg Giorni compresi nel periodo di calcolo per raffrescamento

Q_{C,nd} Fabbisogno di energia termica utile del fabbricato (ventilazione naturale) Q_{C,sys,out} Fabbisogno di energia termica utile dell'edificio (ventilazione meccanica)

 $\begin{array}{lll} Q_{\text{C,sys,out,cont}} & \text{Fabbisogno corretto per contabilizzazione} \\ Q_{\text{C,sys,out,corr}} & \text{Fabbisogno corretto per ulteriori fattori} \\ Q_{\text{cr}} & \text{Fabbisogno effettivo di energia termica} \\ Q_{\text{v}} & \text{Fabbisogno per il trattamento dell'aria} \\ Q_{\text{C,gen,out}} & \text{Fabbisogno in uscita dalla generazione} \\ Q_{\text{c,gen,in}} & \text{Fabbisogno in ingresso alla generazione} \end{array}$

Fabbisogni elettrici

Mese	gg	Q _{C,em,aux} [kWh]	Q _{C,du,aux} [kWh]	Q _{C,dp,aux} [kWh]	Q _{C,gen,aux} [kWh]
gennaio	1			1	
febbraio	-	-	-	1	-
marzo	2	0	0	0	0
aprile	30	0	0	0	0
maggio	31	1	0	0	0
giugno	30	3	0	0	0
luglio	31	4	0	0	0
agosto	31	3	0	0	0
settembre	30	1	0	0	0
ottobre	15	0	0	0	0
novembre	_	-	-	-	-
dicembre	_	-	-	-	-
TOTALI	200	11	0	0	0

Legenda simboli

gg Giorni compresi nel periodo di calcolo per raffrescamento

Q_{C,em,aux} Fabbisogno elettrico ausiliari emissione

Q_{C,du,aux}
Fabbisogno elettrico ausiliari distribuzione di utenza
Q_{C,dp,aux}
Fabbisogno elettrico ausiliari distribuzione primaria

Q_{C,gen,aux} Fabbisogno elettrico ausiliari generazione

Dettagli impianto termico

Mese	99	Fk [-]	η _{C,rg} [%]	η _{c,d} [%]	η _{c,s} [%]	η _{C,dp} [%]	η _{C,gen,ut}	η _{C,gen,p,nren} [%]	η _{C,gen,p,tot} [%]	η _{c,g,p,nren} [%]	η _{C,g,p,tot} [%]
gennaio		-	-		1	-	-	-	-	_	
febbraio	-	-	_	-	-	-	-	-	-	-	
marzo	2	0,00	98,0	-	-	-	354,0	181,5	146,3	167,5	135,0
aprile	30	0,00	98,0	-	-	-	354,0	181,5	146,3	167,5	135,0
maggio	31	0,01	98,0	-	-	-	354,0	181,5	146,3	167,5	135,0
giugno	30	0,05	98,0	-	-	-	354,0	181,5	146,3	167,5	135,0
luglio	31	0,06	98,0	-	-	-	354,0	181,5	146,3	167,5	135,0
agosto	31	0,05	98,0	-	-	-	354,0	181,5	146,3	167,5	135,0
settembre	30	0,01	98,0	-	-	-	354,0	181,5	146,3	167,5	135,0
ottobre	15	0,00	98,0	-	-	-	354,0	181,5	146,3	167,5	135,0
novembre	-	-	-	-	-	-	-	-	-	-	-
dicembre	-	-	-	-	-	-	-	-	-	-	-

gg Giorni compresi nel periodo di calcolo per raffrescamento

 $\begin{array}{lll} Fk & \text{Fattore di carico della pompa di calore} \\ \eta_{\text{C,rg}} & \text{Rendimento mensile di regolazione} \\ \eta_{\text{C,d}} & \text{Rendimento mensile di distribuzione} \\ \eta_{\text{C,s}} & \text{Rendimento mensile di accumulo} \\ \end{array}$

 $\eta_{\text{C,dp}}$ Rendimento mensile di distribuzione primaria

 $\eta_{\text{C,gen,ut}}$ Rendimento mensile di generazione rispetto all'energia utile

 $\eta_{C,gen,p,nren}$ Rendimento mensile di generazione rispetto all'energia primaria non rinnovabile

 $\eta_{C,g,p,nren}$ Rendimento globale medio mensile rispetto all'energia primaria non rinnovabile

 $\eta_{\text{C,g,p,tot}}$ Rendimento globale medio mensile rispetto all'energia primaria totale

Fabbisogno di energia primaria

Mese	99	Qc,gn,in [kWh]	Q _{c,aux} [kWh]	Qc,p,nren [kWh]	Qc,p,tot [kWh]	Combustibile [kWh]
gennaio	-	-		-		-
febbraio	-	-	-	-	-	-
marzo	2	0	0	0	0	0
aprile	30	1	1	1	2	0
maggio	31	23	24	47	58	0
giugno	30	97	100	195	242	0
luglio	31	133	137	267	331	0
agosto	31	99	102	200	248	0
settembre	30	25	25	49	61	0
ottobre	15	0	0	0	1	0
novembre	-	-	-	-	-	-
dicembre	-	-	-	-	-	-
TOTALI	200	378	389	<i>759</i>	942	0

Legenda simboli

gg Giorni compresi nel periodo di calcolo per raffrescamento

Qc,gn,in Energia termica in ingresso al sottosistema di generazione per raffrescamento

Q_{C,aux} Fabbisogno elettrico totale per raffrescamento

 $Q_{C,p,nren}$ Fabbisogno di energia primaria non rinnovabile per raffrescamento

 $Q_{C,p,tot}$ Fabbisogno di energia primaria totale per raffrescamento

FABBISOGNI E CONSUMI TOTALI

Edificio : Ampliamento struttura alberghiera	DPR 412/93	E.1 (3)	Superficie utile	66,94	m ²	
--	------------	---------	------------------	-------	----------------	--

Fabbisogno di energia primaria e indici di prestazione

Servizio	Qp,nren [kWh]	Qp,ren [kWh]	Qp,tot [kWh]	EP,nren [kWh/m²]	EP,ren [kWh/m²]	EP,tot [kWh/m²]
Riscaldamento	1931	1940	3872	28,85	28,99	57,84
Raffrescamento	<i>759</i>	183	942	11,34	2,73	14,08
Illuminazione	6949	1675	8624	103,81	25,02	128,83
TOTALE	9640	<i>37</i> 98	13438	144,01	56,74	200,75

Vettori energetici ed emissioni di CO₂

Vettore energetico	Consumo	U.M.	CO ₂ [kg/anno]	Servizi
Energia elettrica	4943	kWhel/anno	2274	Riscaldamento, Raffrescamento, Illuminazione

Zona 1 : Zona	DPR 412/93	E.1 (3)	Superficie utile	66,94	m ²	
---------------	------------	---------	------------------	-------	----------------	--

Fabbisogno di energia primaria e indici di prestazione

Servizio	Qp,nren [kWh]	Qp,ren [kWh]	Qp,tot [kWh]	EP,nren [kWh/m²]	EP,ren [kWh/m²]	EP,tot [kWh/m²]
Riscaldamento	1931	1940	3872	28,85	28,99	57,84
Raffrescamento	<i>759</i>	183	942	11,34	2,73	14,08
Illuminazione	6949	1675	8624	103,81	25,02	128,83
TOTALE	9640	<i>37</i> 98	13438	144,01	56,74	200,75

Vettori energetici ed emissioni di CO₂

Vettore energetico	Consumo	U.M.	CO₂ [kg/anno]	Servizi
Energia elettrica	4943	kWhel/anno	2274	Riscaldamento, Raffrescamento, Illuminazione

Calcolo dei carichi termici estivi secondo il metodo Carrier - Pizzetti

EDIFICIO Ampliamento struttura alberghiera

INDIRIZZO via Grigolli, 10 - Desenzano del Garda (BS)

COMMITTENTE TOMGIO Srl

INDIRIZZO Via Roma, 68 - Grezzana (VR)

COMUNE **Desenzano del Garda**

Opzioni di calcolo adottate:

Coefficiente di correzione solare 1,00

Metodo di calcolo con fattore di accumulo

Scambi termici per ventilazione considerati anche se negativi

Rif.: L.10-Palazzo del Garda.E0001

Software di calcolo : Edilclima - EC706 - versione 5

Studio Termotecnico Papa Stefano Via Rovetta, 37 - 25080 - Padenghe s/G - BS

DATI CLIMATICI DELLA LOCALITÀ

Caratteristiche geografiche

Località Desenzano del Garda

Provincia **Brescia**

Altitudine s.l.m. 67 m

Latitudine nord 45° 27′ Longitudine est 10° 32′ Gradi giorno 2229

Zona climatica **E**

Località di riferimento

per dati invernali **Brescia**per dati estivi **Brescia**

Stazioni di rilevazione

per la temperatura

per l'irradiazione

per il vento

Buttapietra

Buttapietra

Buttapietra

Caratteristiche del vento

Regione di vento:

Direzione prevalente

Est

Distanza dal mare > 40 km
Velocità media del vento 0,9 m/s
Velocità massima del vento 1,8 m/s

Dati invernali

Temperatura esterna di progetto -6,5 °C

Stagione di riscaldamento convenzionale dal **15 ottobre** al **15 aprile**

Dati estivi

Temperatura esterna bulbo asciutto

Temperatura esterna bulbo umido

Umidità relativa

Escursione termica giornaliera

31,8 °C

23,0 °C

48,0 %

Escursione termica giornaliera

15 °C

Temperature esterne medie mensili

	Descrizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Т	emperatura	°C	2.2	4.3	8.7	13.1	17.7	22.1	23,8	22,6	18,6	13.5	7.8	4.1

Irradiazione solare media mensile

Esposizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Nord	MJ/m ²	1,4	2,3	3,6	5,5	8,4	10,2	9,5	6,8	4,5	2,9	1,6	1,2
Nord-Est	MJ/m ²	1,6	3,0	5,5	8,2	11,7	13,5	13,0	10,3	7,3	3,9	1,8	1,3
Est	MJ/m²	3,9	6,1	9,1	11,3	14,5	16,0	15,9	13,6	11,5	6,8	3,6	3,4
Sud-Est	MJ/m²	7,3	9,3	11,5	11,9	13,5	13,8	14,1	13,6	13,4	9,3	5,8	6,7
Sud	MJ/m ²	9,4	11,2	12,1	10,8	11,0	10,7	11,0	11,5	13,1	10,6	7,2	8,8
Sud-Ovest	MJ/m²	7,3	9,3	11,5	11,9	13,5	13,8	14,1	13,6	13,4	9,3	5,8	6,7
Ovest	MJ/m²	3,9	6,1	9,1	11,3	14,5	16,0	15,9	13,6	11,5	6,8	3,6	3,4
Nord-Ovest	MJ/m²	1,6	3,0	5,5	8,2	11,7	13,5	13,0	10,3	7,3	3,9	1,8	1,3
Orizz. Diffusa	MJ/m²	1,9	3,1	4,8	6,9	8,5	8,7	8,3	7,4	5,6	4,1	2,3	1,6
Orizz. Diretta	MJ/m²	2,7	4,6	7,5	9,5	13,4	15,9	15,9	12,7	10,3	4,9	2,2	2,3

Irradianza sul piano orizzontale nel mese di massima insolazione: 285 W/m²

SOMMARIO CARICHI TERMICI nell'ora di massimo carico della zona

ZONA: 1 Zona

Mese: Luglio

Ora di massimo carico della zona: 14

Carichi termici nell'ora di massimo carico della zona:

N.	Descrizione	Q _{Irr} [W]	Qτr [W]	Q _v [W]	Q _c [W]	Q _{gl,sen} [W]	Q _{gl,lat} [W]	Q _{gl} [W]
1	Piano terra	26	150	320	275	545	228	772
2	Piano primo	26	150	333	272	547	235	<i>781</i>
3	Piano secondo	42	136	274	224	483	193	676
	=							

Totali 95 437 928 771 1575 655 2230

Legenda simboli

 $\begin{array}{ll} Q_{\text{Irr}} & \text{Carico dovuto all'irraggiamento} \\ Q_{\text{Tr}} & \text{Carico dovuto alla trasmissione} \\ Q_{\text{V}} & \text{Carico dovuto alla ventilazione} \end{array}$

Qc Carichi interni

 $\begin{array}{ll} Q_{\text{gl,sen}} & \quad \text{Carico sensibile globale} \\ Q_{\text{gl,lat}} & \quad \text{Carico latente globale} \end{array}$

 Q_{gl} Carico globale

DETTAGLIO LOCALI Distinta dei carichi termici estivi

Zona: 1 Locale: 1 Descrizione: Piano terra

Scambi termici per irraggiamento, trasmissione e ventilazione:

Temperatura bulbo secco	26,0	°C	Superficie utile	23,9	m^2
Temperatura bulbo umido	19,0	°C	Volume netto	<i>68,1</i>	m^3
Umidità relativa interna	<i>52,3</i>	%	Ricambio di picco	1,0	vol/h

Carichi interni:

Numero di persone	0,956	persone	Potenza elettrica per m ²	10	W/m ²
Q sensibile per persona	64	W/pers	Altro Q sensibile	0	W
O latente per persona	46	W/pers	Altro Q latente	0	W

Mese: Luglio

Carichi termici complessivi:

Ora	Q _{Irr} [W]	Q _{τr} [W]	Q _√ [W]	Q. [W]	Q _{gl,sen} [W]	Q _{gl,lat} [W]	Q _{gl} [W]
8	105	21	121	344	346	245	591
10	101	24	185	172	263	220	483
12	51	99	277	275	460	243	702
14	26	150	320	275	545	228	772
16	14	167	320	172	460	214	674
18	7	120	277	344	523	226	<i>749</i>

Dettaglio dei carichi termici interni:

Ora	Q _{lat,pers} [W]	Q _{sen,pers} [W]	Q _{pers} [W]	Q _{sen,elett}	Q。 [W]
8	44	61	105	239	344
10	22	31	53	120	172
12	35	49	84	191	275
14	35	49	84	191	275
16	22	31	53	120	172
18	44	61	105	239	344

Dettaglio dei carichi termici per ventilazione:

Ora	Dh, _{lat} [kJ/kg]	Dh _{,sen} [kJ/kg]	Q _{v,lat} [W]	Q _{v,sen} [W]	Q _√ [W]
8	8,9	-3,5	201	-80	121
10	8,7	-0,6	198	-13	185
12	9,1	3,1	207	70	277
14	8,5	5,6	192	128	320
16	8,5	5,6	192	128	320
18	8,0	4,2	182	95	277

Legenda simboli

Q_{Irr}	Carico dovuto all'irraggiamento
Q_{Tr}	Carico dovuto alla trasmissione
D .	

 $\begin{array}{ll} Dh_{lat} & \quad \text{Differenza di entalpia latente per l'aria di rinnovo} \\ Dh_{sen} & \quad \text{Differenza di entalpia sensibile per l'aria di rinnovo} \end{array}$

 $\begin{array}{lll} Q_{\text{v,lat}} & \text{Carico latente dovuto alla ventilazione} \\ Q_{\text{v,sen}} & \text{Carico sensibile dovuto alla ventilazione} \\ Q_{\text{lat,pers}} & \text{Carico latente dovuto alla presenza di persone} \\ Q_{\text{sen,pers}} & \text{Carico sensibile dovuto alla presenza di persone} \end{array}$

 $Q_{\text{sen,elett}}$ Carico sensibile dovuto alla presenza di macchinari elettrici

Zona: 1 Locale: 2 Descrizione: Piano primo

Scambi termici per irraggiamento, trasmissione e ventilazione:

Temperatura bulbo secco	26,0	°C	Superficie utile	23,6	m²
Temperatura bulbo umido	19,0	°C	Volume netto	<i>70,8</i>	m^3
Umidità relativa interna	<i>52,3</i>	%	Ricambio di picco	1,0	vol/h

Carichi interni:

Numero di persone	0,944	persone	Potenza elettrica per m²	10	W/m ²
Q sensibile per persona	64	W/pers	Altro Q sensibile	0	W
Q latente per persona	46	W/pers	Altro Q latente	0	W

Mese: Luglio

Carichi termici complessivi:

Ora	Q _{Irr} [W]	Qτ _r [W]	Q _v [W]	Q。 [W]	Q _{gl,sen} [W]	Q _{gl,lat} [W]	Q _{gl} [W]
8	105	21	125	340	339	252	591
10	101	24	193	170	261	227	488
12	51	99	288	272	459	250	<i>709</i>
14	26	150	333	272	547	235	781
16	14	167	333	170	463	222	684
18	7	116	288	340	518	233	<i>751</i>

Dettaglio dei carichi termici interni:

Ora	Q _{lat,pers} [W]	Q _{sen,pers} [W]	Q _{pers} [W]	Q _{sen,elett} [W]	Q. [W]
8	43	60	104	236	340
10	22	30	52	118	170
12	35	48	83	189	272
14	35	48	83	189	272
16	22	30	52	118	170
18	43	60	104	236	340

Dettaglio dei carichi termici per ventilazione:

Ora	Dh, _{lat} [kJ/kg]	Dh,sen [kJ/kg]	Q _{v,lat} [W]	Q _{v,sen} [W]	Q _v [W]
8	8,9	-3,5	209	-84	125
10	8,7	-0,6	206	-13	193
12	9,1	3,1	216	73	288
14	8,5	5,6	200	133	333
16	8,5	5,6	200	133	333
18	8,0	4,2	189	99	288

Legenda simboli

 $Q_{\text{Irr}} \\$ Carico dovuto all'irraggiamento Q_{Tr} Carico dovuto alla trasmissione $Dh_{\text{lat}} \\$ Differenza di entalpia latente per l'aria di rinnovo $\mathsf{Dh}_{\mathsf{sen}}$ Differenza di entalpia sensibile per l'aria di rinnovo $Q_{\text{v,lat}}$ Carico latente dovuto alla ventilazione $Q_{\text{v,sen}}$ Carico sensibile dovuto alla ventilazione $Q_{\text{lat},\text{pers}}$ Carico latente dovuto alla presenza di persone $Q_{\text{sen,pers}} \\$ Carico sensibile dovuto alla presenza di persone Q_{sen,elett} Carico sensibile dovuto alla presenza di macchinari elettrici Zona: 1 Locale: 3 Descrizione: Piano secondo

Scambi termici per irraggiamento, trasmissione e ventilazione:

Temperatura bulbo secco	26,0	°C	Superficie utile	19,4	m²
Temperatura bulbo umido	19,0	°C	Volume netto	<i>58,3</i>	m^3
Umidità relativa interna	<i>52,3</i>	%	Ricambio di picco	1,0	vol/h

Carichi interni:

Numero di persone	0 ,777	persone	Potenza elettrica per m²	10	W/m ²
Q sensibile per persona	64	W/pers	Altro Q sensibile	0	W
Q latente per persona	46	W/pers	Altro Q latente	0	W

Mese: Luglio

Carichi termici complessivi:

Ora	Q _{Irr} [W]	Q _{τr} [W]	[M]	Q _°	Q _{gl,sen} [W]	Q _{gl,lat} [W]	Q gl [W]
8	169	22	103	280	366	208	574
10	164	24	158	140	299	187	486
12	82	87	237	224	424	206	630
14	42	136	274	224	483	193	676
16	23	157	274	140	412	182	595
18	12	119	237	280	456	192	648

Dettaglio dei carichi termici interni:

Ora	Q _{lat,pers} [W]	Q _{sen,pers} [W]	Q _{pers} [W]	Q _{sen,elett} [W]	Q _° [W]
8	36	50	85	194	280
10	18	25	43	97	140
12	29	40	68	155	224
14	29	40	68	155	224
16	18	25	43	97	140
18	36	50	85	194	280

Dettaglio dei carichi termici per ventilazione:

Ora	Dh, _{lat} [kJ/kg]	Dh,sen [kJ/kg]	Q _{v,lat} [W]	Q _{v,sen} [W]	Q _v [W]
8	8,9	-3,5	172	-69	103
10	8,7	-0,6	169	-11	158
12	9,1	3,1	177	60	237
14	8,5	5,6	165	110	274
16	8,5	5,6	165	110	274
18	8,0	4,2	156	81	237

<u>Legenda simboli</u>

$Q_{\text{Irr}} \\$	Carico dovuto all'irraggiamento
Q_{Tr}	Carico dovuto alla trasmissione
Dh _{lat}	Differenza di entalpia latente per l'aria di rinnovo
Dh_{sen}	Differenza di entalpia sensibile per l'aria di rinnovo
$Q_{\text{v,lat}}$	Carico latente dovuto alla ventilazione
$Q_{\text{v,sen}}$	Carico sensibile dovuto alla ventilazione
$Q_{\text{lat},\text{pers}}$	Carico latente dovuto alla presenza di persone
$Q_{\text{sen,pers}} \\$	Carico sensibile dovuto alla presenza di persone
$Q_{\text{sen,elett}} \\$	Carico sensibile dovuto alla presenza di macchinari elettrici

CARICHI TERMICI INTERO EDIFICIO

Edificio: Ampliamento struttura alberghiera

Mese: Luglio

Ora di massimo carico dell'edificio: 14

Volume netto totale climatizzato 192	7,23	m^3
Superficie netta totale climatizzata 66	5,94	m^2
Coefficiente di contemporaneità per persone	1,00	-
Coefficiente di contemporaneità per carichi elettrici	1,00	-
Numero totale di persone	2,68	-
Numero totale di persone con coefficiente contemporaneità	2,68	-
Potenza elettrica totale 669	9,40	W
Potenza elettrica totale con coefficiente di contemporaneità 669	9,40	W
Totale altro calore sensibile	0	W
Totale altro calore latente	0	W

Carichi termici senza riduzione per contemporaneità:

Ora	Q _{Irr} [W]	Q _{τr} [W]	Q _√ [W]	Q。 [W]	Q _{gl,sen} [W]	Q _{gl,lat} [W]	Q ₉ 1
8	<i>37</i> 9	64	349	964	1050	705	<i>1756</i>
10	367	72	536	482	823	634	1457
12	184	285	802	771	1343	699	2042
14	95	437	928	771	1575	655	2230
16	52	491	928	482	1335	618	1953
18	26	355	803	964	1496	651	2148

Dettaglio carichi interni Qc:

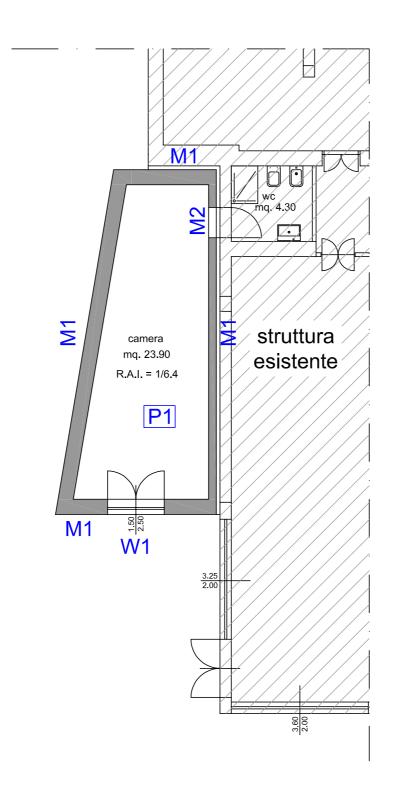
Ora	Q _{lat,pers} [W]	Q _{sen,pers} [W]	Q _{sen,elett} [W]	Altro Q _{lat} [W]	Altro Q _{sen} [W]	Q. [W]
8	123	171	669	0	0	964
10	62	86	335	0	0	482
12	99	137	536	0	0	771
14	99	137	536	0	0	771
16	62	86	335	0	0	482
18	123	171	669	0	0	964

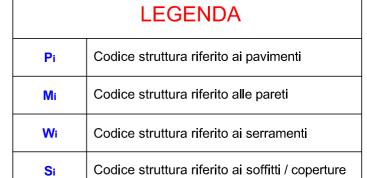
Carichi termici con riduzione per contemporaneità:

Ora	Q _{Irr} [W]	Q _{τr} [W]	Q _√ [W]	Q。 [W]	Qgl,sen [W]	Q _{gl,lat} [W]	Q _{gl} [W]
8	<i>37</i> 9	64	349	964	1050	705	<i>1756</i>
10	367	72	536	482	823	634	1457
12	184	285	802	771	1343	699	2042
14	95	437	928	771	1575	655	2230
16	52	491	928	482	1335	618	1953
18	26	355	803	964	1496	651	2148

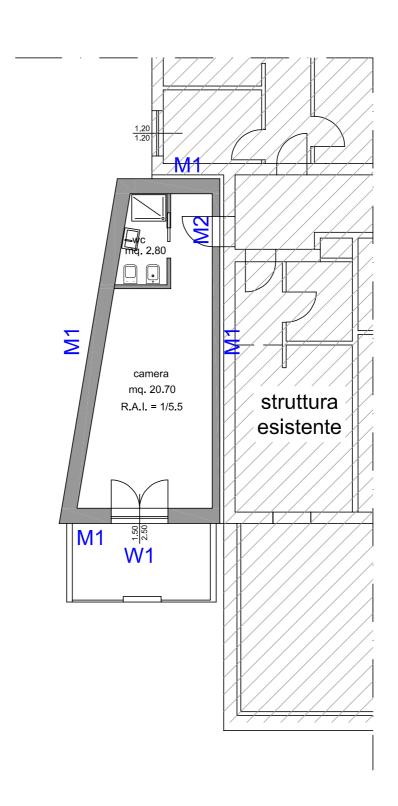
Dettaglio carichi interni Qc:

Ora	Q _{lat,pers} [W]	Q _{sen,pers} [W]	Q _{sen,elett} [W]	Altro Q _{lat} [W]	Altro Q _{sen} [W]	Q _c [W]
8	123	171	669	0	0	964
10	62	86	335	0	0	482
12	99	137	536	0	0	771
14	99	137	536	0	0	<i>771</i>
16	62	86	335	0	0	482
18	123	171	669	0	0	964

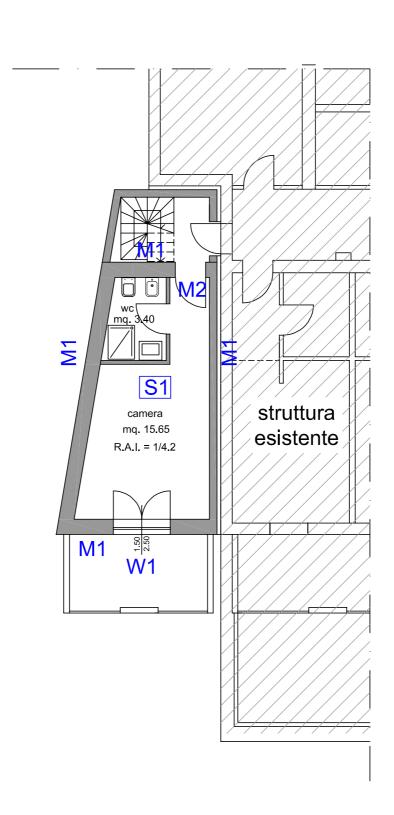

 $\begin{array}{ll} Q_{\text{Irr}} & \text{Carico dovuto all'irraggiamento} \\ Q_{\text{Tr}} & \text{Carico dovuto alla trasmissione} \\ Q_{\text{V}} & \text{Carico dovuto alla ventilazione} \end{array}$


Qc Carichi interni

 $\begin{array}{ll} Q_{\text{lat,pers}} & \quad \text{Carichi interni latenti per persone} \\ Q_{\text{sen,pers}} & \quad \text{Carichi interni sensibili per persone} \end{array}$


 $\begin{array}{lll} Q_{\text{sen,elett}} & \text{Carichi interni elettrici} \\ \text{Altro } Q_{\text{lat}} & \text{Altri carichi interni latenti} \\ \text{Altro } Q_{\text{sen}} & \text{Altri carichi interni sensibili} \\ Q_{\text{gl,sen}} & \text{Carico sensibile globale} \\ Q_{\text{gl,lat}} & \text{Carico latente globale} \end{array}$

 $Q_{gl} \hspace{1cm} \hbox{Carico globale} \\$



LEGENDA				
Pi	Codice struttura riferito ai pavimenti			
Mi	Codice struttura riferito alle pareti			
Wi	Codice struttura riferito ai serramenti			
Si	Codice struttura riferito ai soffitti / coperture			

LEGENDA				
Pi	Codice struttura riferito ai pavimenti			
Mi	Codice struttura riferito alle pareti			
Wi	Codice struttura riferito ai serramenti			
Si	Codice struttura riferito ai soffitti / coperture			

